Skip to main content

Advertisement

Log in

Mitochondrial DNA Mutations in Pancreatic Cancer

  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Somatic mutations of mitochondrial DNA (mtDNA) are increasingly being recognized in many human cancers, but automated sequencing of 16.5 kb of DNA poses an onerous task. We have recently described an oligonucleotide microarray (MitoChip) for rapid and accurate sequencing of the entire mitochondrial genome (Zhou et al., J Mol Diagnostics, 8: 9_14, 2006), greatly facilitating the analysis of mtDNA mutations in cancer. In this report, we perform a comprehensive cataloging of somatic mutations in the mitochondrial genome of human pancreatic cancers using our novel array-based approach.

Materials and Methods

MitoChip analysis was performed on DNA isolated from 15 histologically confirmed resection specimens of pancreatic ductal adenocarcinomas. In all cases, matched nonneoplastic pancreatic tissue was obtained as germline control for mtDNA sequence. DNA was extracted from snap-frozen cryostat-embedded specimens and hybridized to the sequencing microarray after appropriate polymerase chain reaction amplification and labeling steps. The vast majority of somatic mutational analyses of mtDNA in human cancers utilize lymphocyte DNA as germline control, without excluding the potential for organ-specific polymorphisms. Therefore, we also examined a series of 15 paired samples of DNA obtained from nonneoplastic pancreata and corresponding EBV-immortalized lymphoblastoid cell lines to determine whether lymphocyte DNA provides an accurate surrogate for the mtDNA sequence of pancreatic tissue.

Results

We sequenced 497,070 base pairs of mtDNA in the 15 matched samples of pancreatic cancer and nonneoplastic pancreatic tissue, and 467,269 base pairs (94.0%) were assigned by the automated genotyping software. All 15 pancreatic cancers demonstrated at least one somatic mtDNA mutation compared to the control germline DNA with a range of 1–14 alterations. Of the 71 somatic mutations observed in our series, 18 were nonsynonymous coding region alterations (i.e., resulting in an amino acid change), 22 were synonymous coding region alterations, and 31 involved noncoding mtDNA segments (including ribosomal and transfer RNAs). Overall, somatic mutations in the coding region most commonly involved the ND4, COI, and CYTB genes; of note, an A–G transition at nucleotide position 841 in the 12sRNA was observed in three independent samples. In the paired analysis of nonneoplastic pancreata and lymphoblastoid cell line DNA, 14 nucleotide discrepancies were observed out of 226,876 nucleotide sequences (a concordance rate of 99.99%), with 9 samples demonstrating a perfect match across all bases assigned.

Conclusions

Our findings confirm that somatic mtDNA mutations are common in pancreatic cancers, and therefore, have the potential to be a clinically useful biomarker for early detection. Further, our studies confirm that lymphocyte DNA is an excellent, albeit not perfect, surrogate for nonneoplastic pancreatic tissues in terms of being utilized as a germline control. Finally, our report confirms the utility of a high-throughput array-based platform for mtDNA mutational analyses of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20:211–26.

    Article  PubMed  CAS  Google Scholar 

  2. Rosty C, Goggins M. Early detection of pancreatic carcinoma. Hematol Oncol Clin North Am 2002;16:37–52.

    Article  PubMed  Google Scholar 

  3. Kagan J, Srivastava S. Mitochondria as a target for early detection and diagnosis of cancer. Crit Rev Clin Lab Sci 2005;42:453–72.

    Article  PubMed  CAS  Google Scholar 

  4. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene 2006;25:4663–74.

    Article  PubMed  CAS  Google Scholar 

  5. Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA 2003;100:1838–43.

    Article  PubMed  CAS  Google Scholar 

  6. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res 2001;61:1299–304.

    PubMed  CAS  Google Scholar 

  7. Sui G, Zhou S, Wang J, Canto M, Lee EE, Eshleman JR, et al. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer 2006;5:73.

    Article  PubMed  CAS  Google Scholar 

  8. Jakupciak JP, Dakubo GD, Maragh S, Parr RL. Analysis of potential cancer biomarkers in mitochondrial DNA. Curr Opin Mol Ther 2006;8:500–6.

    PubMed  CAS  Google Scholar 

  9. Jakupciak JP, Wang W, Markowitz ME, Ally D, Coble M, Srivastava S, et al. Mitochondrial DNA as a cancer biomarker. J Mol Diagnostics 2005;7:258–67.

    CAS  Google Scholar 

  10. Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, et al. The human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 2004;14:812–9.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou S, Kassauei K, Cutler DJ, Kennedy GC, Sidransky D, Maitra A, et al. An oligonucleotide microarray for high-throughput sequencing of the mitochondrial genome. J Mol Diagnostics 2006;8:476–82.

    Article  CAS  Google Scholar 

  12. Jacobs L, Gerards M, Chinnery P, Dumoulin J, de Coo I, Geraedts J, et al. mtDNA point mutations are present at various levels of heteroplasmy in human oocytes. Mol Hum Reprod 2007;13:9–14.

    Article  CAS  Google Scholar 

  13. van Eijsden RG, Gerards M, Eijssen LM, Hendrickx AT, Jongbloed RJ, Wokke JH, et al. Chip-based mtDNA mutation screening enables fast and reliable genetic diagnosis of OXPHOS patients. Genet Med 2006;8:620–7.

    Article  PubMed  CAS  Google Scholar 

  14. Coon KD, Valla J, Szelinger S, Schneider LE, Niedzielko TL, Brown KM, et al. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing. Mitochondrion 2006;6:194–210.

    Article  PubMed  CAS  Google Scholar 

  15. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005;37:1099–103.

    Article  PubMed  CAS  Google Scholar 

  16. Josephson R, Sykes G, Liu Y, Ording C, Xu W, Zeng X, et al. A molecular scheme for improved characterization of human embryonic stem cell lines. BMC Biol 2006;4:28.

    Article  PubMed  CAS  Google Scholar 

  17. Cutler DJ, Zwick ME, Carrasquillo MM, Yohn CT, Tobin KP, Kashuk C, et al. High-throughput variation detection and genotyping using microarrays. Genome Res 2001;11:1913–25.

    PubMed  CAS  Google Scholar 

  18. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999;23:147.

    Article  PubMed  CAS  Google Scholar 

  19. Giovannucci E, Ogino S. DNA methylation, field effects, and colorectal cancer. J Natl Cancer Inst 2005;97:1317–9.

    Article  PubMed  Google Scholar 

  20. Guo M, House MG, Hooker C, Han Y, Heath E, Gabrielson E, et al. Promoter hypermethylation of resected bronchial margins: a field defect of changes? Clin Cancer Res 2004;10:5131–6.

    Article  PubMed  CAS  Google Scholar 

  21. Berman DB, Costalas J, Schultz DC, Grana G, Daly M, Godwin AK. A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res 1996;56:3409–14.

    PubMed  CAS  Google Scholar 

  22. Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 2003;163:1255–60.

    PubMed  CAS  Google Scholar 

  23. Lohr M, Maisonneuve P, Lowenfels AB. K-Ras mutations and benign pancreatic disease. Int J Pancreatol 2000;27:93–103.

    PubMed  CAS  Google Scholar 

  24. Ha PK, Tong BC, Westra WH, Sanchez-Cespedes M, Parrella P, Zahurak M, et al. Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin Cancer Res 2002;8:2260–5.

    PubMed  CAS  Google Scholar 

  25. Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001;20:5195–8.

    Article  PubMed  CAS  Google Scholar 

  26. Tang M, Baez S, Pruyas M, Diaz A, Calvo A, Riquelme E, et al. Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res 2004;10:1041–6.

    Article  PubMed  CAS  Google Scholar 

  27. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 2001;28:147–50.

    Article  PubMed  CAS  Google Scholar 

  28. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005;102:719–24.

    Article  PubMed  CAS  Google Scholar 

  29. Bashir R, Masih A, Kallweit K, Fordyce-Boyer R, Sanger W, Purtilo D. Evolution of clonality and invasive behavior of Epstein-Barr virus immortalized lymphoblastoid cell lines in SCID mice brains. Lab Invest 1992;67:450–6.

    PubMed  CAS  Google Scholar 

  30. Ryan JL, Kaufmann WK, Raab-Traub N, Oglesbee SE, Carey LA, Gulley ML. Clonal evolution of lymphoblastoid cell lines. Lab Invest 2006;86:1193–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank David J. Cutler, Ph.D. for assistance with data analysis. AM is supported by the Sol Goldman Pancreatic Cancer Research Center and the Michael Rolfe Foundation. GF is supported by a grant from the German Academic Exchange (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anirban Maitra or Georg Feldmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassauei, K., Habbe, N., Mullendore, M.E. et al. Mitochondrial DNA Mutations in Pancreatic Cancer. Int J Gastrointest Canc 37, 57–64 (2006). https://doi.org/10.1007/s12029-007-0008-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-007-0008-2

Keywords

Navigation