Skip to main content

Advertisement

Log in

Prognosis After Cardiac Arrest: The Additional Value of DWI and FLAIR to EEG

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Despite application of the multimodal European Resuscitation Council and European Society of Intensive Care Medicine algorithm, neurological prognosis of patients who remain comatose after cardiac arrest remains uncertain in a large group of patients. In this study, we investigate the additional predictive value of visual and quantitative brain magnetic resonance imaging (MRI) to electroencephalography (EEG) for outcome estimation of comatose patients after cardiac arrest.

Methods

We performed a prospective multicenter cohort study in patients after cardiac arrest submitted in a comatose state to the intensive care unit of two Dutch hospitals. Continuous EEG was recorded during the first 3 days and MRI was performed at 3 ± 1 days after cardiac arrest. EEG at 24 h and ischemic damage in 21 predefined brain regions on diffusion weighted imaging and fluid-attenuated inversion recovery on a scale from 0 to 4 were related to outcome. Quantitative MRI analyses included mean apparent diffusion coefficient (ADC) and percentage of brain volume with ADC < 450 × 10−6 mm2/s, < 550 × 10−6 mm2/s, and < 650 × 10−6 mm2/s. Poor outcome was defined as a Cerebral Performance Category score of 3–5 at 6 months.

Results

We included 50 patients, of whom 20 (40%) demonstrated poor outcome. Visual EEG assessment correctly identified 3 (15%) with poor outcome and 15 (50%) with good outcome. Visual grading of MRI identified 13 (65%) with poor outcome and 25 (89%) with good outcome. ADC analysis identified 11 (55%) with poor outcome and 3 (11%) with good outcome. EEG and MRI combined could predict poor outcome in 16 (80%) patients at 100% specificity, and good outcome in 24 (80%) at 63% specificity. Ischemic damage was most prominent in the cortical gray matter (75% vs. 7%) and deep gray nuclei (45% vs. 3%) in patients with poor versus good outcome.

Conclusions

Magnetic resonance imaging is complementary with EEG for the prediction of poor and good outcome of patients after cardiac arrest who are comatose at admission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46(10):1803–51.

    Article  PubMed Central  Google Scholar 

  2. Nolan, J.P., Sandroni, C., Bottiger, B.W., et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021.

  3. Bongiovanni F, Romagnosi F, Barbella G, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intensive Care Med. 2020;46(5):963–72.

    Article  CAS  Google Scholar 

  4. Ruijter BJ, Tjepkema-Cloostermans MC, Tromp SC, et al. Early electroencephalography for outcome prediction of postanoxic coma: A prospective cohort study. Ann Neurol. 2019;86(2):203–14.

    Article  PubMed Central  Google Scholar 

  5. Westhall E, Rossetti AO, van Rootselaar A-F, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.

    Article  PubMed Central  Google Scholar 

  6. Hofmeijer J, Beernink TMJ, Bosch FH, et al. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.

    Article  PubMed Central  Google Scholar 

  7. Spalletti M, Carrai R, Scarpino M, et al. Single electroencephalographic patterns as specific and time-dependent indicators of good and poor outcome after cardiac arrest. Clin Neurophysiol. 2016;127(7):2610–7.

    Article  CAS  Google Scholar 

  8. Hirsch KG, Fischbein N, Mlynash M, et al. Prognostic value of diffusion-weighted MRI for post-cardiac arrest coma. Neurology. 2020;94(16):e1684–92.

    Article  PubMed Central  Google Scholar 

  9. Keijzer HM, Hoedemaekers CWE, Meijer FJA, et al. Brain imaging in comatose survivors of cardiac arrest: Pathophysiological correlates and prognostic properties. Resuscitation. 2018;133:124–36.

    Article  CAS  Google Scholar 

  10. Barth R, Zubler F, Weck A, et al. Topography of MR lesions correlates with standardized EEG pattern in early comatose survivors after cardiac arrest. Resuscitation. 2020;149:217–24.

    Article  Google Scholar 

  11. Vanden Berghe S, Cappelle S, De Keyzer F, et al. Qualitative and quantitative analysis of diffusion-weighted brain MR imaging in comatose survivors after cardiac arrest. Neuroradiology. 2020;62(11):1361–9.

    Article  Google Scholar 

  12. Keijzer HM, Hoedemaekers CWE. Timing is everything: Combining EEG and MRI to predict neurological recovery after cardiac arrest. Resuscitation. 2020;149:240–2.

    Article  CAS  Google Scholar 

  13. Mlynash M, Campbell DM, Leproust EM, et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010;41(8):1665–72.

    Article  PubMed Central  Google Scholar 

  14. Bevers MB, Scirica BM, Avery KR, et al. Combination of clinical exam, MRI and EEG to predict outcome following cardiac arrest and targeted temperature management. Neurocrit Care. 2018;29(3):396–403.

    Article  Google Scholar 

  15. Wijdicks EF, Campeau NG, Miller GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol. 2001;22(8):1561–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bjorklund E, Lindberg E, Rundgren M, et al. Ischaemic brain damage after cardiac arrest and induced hypothermia–a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85(4):527–32.

    Article  Google Scholar 

  17. Mettenburg JM, Agarwal V, Baldwin M, Rittenberger JC. Discordant observation of brain injury by MRI and malignant electroencephalography patterns in comatose survivors of cardiac arrest following therapeutic hypothermia. AJNR Am J Neuroradiol. 2016;37(10):1787–93.

    Article  CAS  PubMed Central  Google Scholar 

  18. Beuchat I, Sivaraju A, Amorim E, et al. MRI-EEG correlation for outcome prediction in postanoxic myoclonus: a multicenter study. Neurology. 2020;95(4):e335–41.

    Article  CAS  PubMed Central  Google Scholar 

  19. Nolan JP, Soar J, Cariou A, et al. European resuscitation council and european society of intensive care medicine guidelines for post-resuscitation care 2015: section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22.

    Article  Google Scholar 

  20. Prognose van postanoxisch coma - Neurofysiologisch onderzoek postanoxisch coma. 2019 [cited 2020 30–11–2020]; https://richtlijnendatabase.nl/richtlijn/prognose_van_postanoxisch_coma/neurofysiologisch_onderzoek_postanoxisch_coma.html.

  21. Tjepkema-Cloostermans MC, Hofmeijer J, Hom HW, Bosch FH, vanPutten M. Predicting outcome in postanoxic coma: are ten EEG electrodes enough? J Clin Neurophysiol. 2017;34(3):207–12.

    Article  Google Scholar 

  22. Tjepkema-Cloostermans MC, van Meulen FB, Meinsma G, van Putten MJAM. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. Critical care. 2013;17(5):R252.

    Article  PubMed Central  Google Scholar 

  23. Hirsch KG, Mlynash M, Jansen S, et al. Prognostic value of a qualitative brain MRI scoring system after cardiac arrest. J Neuroimaging. 2015;25(3):430–7.

    Article  Google Scholar 

  24. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90.

    Article  Google Scholar 

  25. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Resonanc Med. 2009;62(3):717–30.

    Article  Google Scholar 

  26. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.

    Article  PubMed Central  Google Scholar 

  27. Hirsch KG, Mlynash M, Eyngorn I, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.

    Article  CAS  Google Scholar 

  28. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55.

    Article  PubMed Central  Google Scholar 

  29. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation. Neuron. 2002;33(3):341–55.

    Article  CAS  Google Scholar 

  30. Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26(4):518–29.

    Article  Google Scholar 

  31. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41.

    Article  Google Scholar 

  32. Velly L, Perlbarg V, Boulier T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17(4):317–26.

    Article  Google Scholar 

  33. Wouters A, Scheldeman L, Plessers S, et al. Added value of quantitative apparent diffusion coefficient values for neuroprognostication after cardiac arrest. Neurology. 2021;96(21):e2611–8.

    Article  CAS  Google Scholar 

  34. Nolan JP, Berg RA, Bernard S, et al. Intensive care medicine research agenda on cardiac arrest. Intensive Care Med. 2017;43(9):1282–93.

    Article  Google Scholar 

  35. van Putten M, Jansen C, Tjepkema-Cloostermans MC, et al. Postmortem histopathology of electroencephalography and evoked potentials in postanoxic coma. Resuscitation. 2019;134:26–32.

    Article  Google Scholar 

  36. Endisch C, Westhall E, Kenda M, et al. Hypoxic-ischemic encephalopathy evaluated by brain autopsy and neuroprognostication after cardiac arrest. JAMA Neurol. 2020;77(11):1430–9.

    Article  Google Scholar 

  37. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.

    Article  CAS  Google Scholar 

  38. Medvedeva YV, Ji SG, Yin HZ, Weiss JH. Differential vulnerability of CA1 versus CA3 pyramidal neurons after Ischemia: possible relationship to sources of Zn2+ accumulation and its entry into and prolonged effects on mitochondria. J Neurosci. 2017;37(3):726–37.

    Article  CAS  PubMed Central  Google Scholar 

  39. Bodranghien F, Bastian A, Casali C, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. The Cerebellum. 2016;15(3):369–91.

    Article  Google Scholar 

  40. Grech-Sollars M, Hales PW, Miyazaki K, et al. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed. 2015;28(4):468–85.

    Article  PubMed Central  Google Scholar 

  41. Wijman CA, Mlynash M, Caulfield AF, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;65(4):394–402.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ruud van Kaam, technical physician at the intensive care unit (ICU) of the Radboudumc, Yvonne Teitink, and Helene Vogelensang, research nurses of the ICU at the Rijnstate Hospital, together with the staff of the ICU, radiology, and clinical neurophysiology departments, for constructive assistance in obtaining informed consent and performing electroencephalography measurements and magnetic resonance imaging examinations.

Funding

HMK is funded by the Rijnstate-Radboud promotion fund. CJMK is supported by a clinical established investigator grant of the Dutch Heart Foundation (Grant Number 2012T077) and an ASPASIA grant from The Netherlands Organization for Health Research and Development, ZonMw (Grant Number 015008048). JH is supported by a clinical established investigator grant of the Dutch Heart Foundation (Grant Number 2018T070).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study and analyses: HMK, MMLHV, FJAM, CWEH, CJMK, and JH. Data collection: HMK, MMLHV, FHB, and CWEH. Data analyses: HMK, MMLHV, FJAM, BART, and JH. Writing of the article (first draft): HMK. Revising of the article: HMK, MMLHV, FJAM, BART, FHB, CWEH, CJMK, and JH. All authors approve of the final manuscript.

Corresponding author

Correspondence to Hanneke M. Keijzer.

Ethics declarations

Conflicts of interest

The authors report no conflict of interest.

Ethical approval/informed consent

The study is conducted in accordance with ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. The study was approved by the Committee on Research Involving Human Subjects region Arnhem-Nijmegen.

Clinical trial registration

ClinicalTrials.gov: NCT03308305

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keijzer, H.M., Verhulst, M.M.L.H., Meijer, F.J.A. et al. Prognosis After Cardiac Arrest: The Additional Value of DWI and FLAIR to EEG. Neurocrit Care 37, 302–313 (2022). https://doi.org/10.1007/s12028-022-01498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01498-z

Keywords

Navigation