Skip to main content

Advertisement

Log in

The Influence of Diffusion Weighted Imaging Lesions on Outcomes in Patients with Acute Spontaneous Intracerebral Hemorrhage

  • Original Work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background/Objective

Diffusion weighted imaging (DWI) lesions have been well described in patients with acute spontaneous intracerebral hemorrhage (sICH). However, there are limited data on the influence of these lesions on sICH functional outcomes. We conducted a prospective observational cohort study with blinded imaging and outcomes assessment to determine the influence of DWI lesions on long-term outcomes in patients with acute sICH. We hypothesized that DWI lesions are associated with worse modified Rankin Scale (mRS) at 3 months after hospital discharge.

Methods

Consecutive sICH patients meeting study criteria were consented for an magnetic resonance imaging (MRI) scan of the brain and evaluated for remote DWI lesions by neuroradiologists blinded to the patients’ hospital course. Blinded mRS outcomes were obtained at 3 months. Logistic regression was used to determine significant factors (p < 0.05) associated with worse functional outcomes defined as an mRS of 4–6. The generalized estimating equation (GEE) approach was used to investigate the effect of DWI lesions on dichotomized mRS (0–3 vs 4–6) longitudinally.

Results

DWI lesions were found in 60 of 121 patients (49.6%). The presence of a DWI lesion was associated with increased odds for an mRS of 4–6 at 3 months (OR 5.987, 95% CI 1.409–25.435, p = 0.015) in logistic regression. Using the GEE model, patients with a DWI lesion were less likely to recover over time between 14 days/discharge and 3 months (p = 0.005).

Conclusions

DWI lesions are common in primary sICH, occurring in almost half of our cohort. Our data suggest that DWI lesions are associated with worse mRS at 3 months in good grade sICH and are predictive of impaired recovery after hospital discharge. Further research into the pathophysiologic mechanisms underlying DWI lesions may lead to novel treatment options that may improve outcomes associated with this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kimberly WT, Gilson A, Rost NS, et al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology. 2009;72(14):1230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prabhakaran S, Gupta R, Ouyang B, et al. Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke. 2010;41(1):89–94.

    Article  PubMed  Google Scholar 

  3. Gregoire SM, Charidimou A, Gadapa N, et al. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. Brain. 2011;134(Pt 8):2376–86.

    Article  PubMed  Google Scholar 

  4. Menon RS, Burgess RE, Wing JJ, et al. Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol. 2012;71(2):199–205.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garg RK, Liebling SM, Maas MB, et al. Blood pressure reduction, decreased diffusion on MRI, and outcomes after intracerebral hemorrhage. Stroke. 2012;43(1):67–71.

    Article  PubMed  Google Scholar 

  6. Kang DW, Han MK, Kim HJ, et al. New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology. 2012;79(9):848–55.

    Article  PubMed  Google Scholar 

  7. Wu B, Yao X, Lei C, Liu M, Selim MH. Enlarged perivascular spaces and small diffusion-weighted lesions in intracerebral hemorrhage. Neurology. 2015;85(23):2045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kidwell CS, Rosand J, Norato G, et al. Ischemic lesions, blood pressure dysregulation, and poor outcomes in intracerebral hemorrhage. Neurology. 2017;88:782–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buletko AB, Thacker T, Cho SM, et al. Cerebral ischemia and deterioration with lower blood pressure target in intracerebral hemorrhage. Neurology. 2018;91(11):e1058–66.

    Article  PubMed  Google Scholar 

  10. Hays A, Diringer MN. Elevated troponin levels are associated with higher mortality following intracerebral hemorrhage. Neurology. 2006;66(9):1330–4.

    Article  CAS  PubMed  Google Scholar 

  11. Lord AS, Lewis A, Czeisler B, et al. Majority of 30-day readmissions after intracerebral hemorrhage are related to infections. Stroke. 2016;47(7):1768–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu TY, Putaala J, Sharma G, et al. Persistent hyperglycemia is associated with increased mortality after intracerebral hemorrhage. J Am Heart Assoc. 2017;6(8):e005760.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Becker KJ, Baxter AB, Cohen WA, et al. Withdrawal of support in intracerebral hemorrhage may lead to self-fulfilling prophecies. Neurology. 2001;56(6):766–72.

    Article  CAS  PubMed  Google Scholar 

  14. Garg RK, Leibling SM, Duran IM, Russell EJ, Naidech AM. Diffusion restriction on MRI leads to worse outcomes after intracerebral hemorrhage. Neurology. 2011;76(Number 9, Supplement 4):A212.

    Google Scholar 

  15. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56(4):537–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals From the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.

    Article  PubMed  Google Scholar 

  17. Jorgensen HS, Nakayama H, Raaschou HO, Gam J, Olsen TS. Silent infarction in acute stroke patients. Prevalence, localization, risk factors, and clinical significance: the Copenhagen Stroke Study. Stroke. 1994;25(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  18. Kothari RU, Brott T, Broderick JP, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.

    Article  CAS  PubMed  Google Scholar 

  19. Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB. Computed tomographic diagnosis of intraventricular hemorrhage. Etiology and prognosis. Radiology. 1982;143(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.

    Article  PubMed  Google Scholar 

  21. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.

    Article  PubMed  Google Scholar 

  22. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 15 T in Alzheimer’s dementia and normal aging. Am J Roentgenol. 1987;149(2):351–6.

    Article  CAS  Google Scholar 

  23. Wilson JT, Hareendran A, Grant M, et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale. Stroke. 2002;33(9):2243–6.

    Article  PubMed  Google Scholar 

  24. Simpson SL, Edwards LJ. A circular LEAR correlation structure for cyclical longitudinal data. Stat Methods Med Res. 2013;22(3):296–306.

    Article  PubMed  Google Scholar 

  25. Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13–22.

    Article  Google Scholar 

  26. Boulanger M, Schneckenburger R, Join-Lambert C, et al. Diffusion-weighted imaging hyperintensities in subtypes of acute intracerebral hemorrhage. Stroke. 2018;50:135–42.

    Article  Google Scholar 

  27. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  28. Bendszus M, Koltzenburg M, Burger R, et al. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet. 1999;354(9190):1594–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gioia LC, Kate M, Choi V, et al. Ischemia in intracerebral hemorrhage is associated with leukoaraiosis and hematoma volume, not blood pressure reduction. Stroke. 2015;46(6):1541–7.

    Article  PubMed  Google Scholar 

  30. Auriel E, Westover MB, Bianchi MT, et al. Estimating total cerebral microinfarct burden from diffusion-weighted imaging. Stroke. 2015;46(8):2129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21(7):804–10.

    Article  CAS  PubMed  Google Scholar 

  32. Butcher KS, Jeerakathil T, Hill M, et al. The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke. 2013;44(3):620–6.

    Article  PubMed  Google Scholar 

  33. Anderson CS, Heeley E, Huang Y, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368(25):2355–65.

    Article  CAS  PubMed  Google Scholar 

  34. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683–9.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CD, Johnson ES, Van Eldik LJ, et al. Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer’s disease. Brain Behav. 2016;6(3):e00438.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke. 2010;41(3):450–4.

    Article  PubMed  Google Scholar 

  37. Ye XH, Gao T, Xu XH, et al. Factors associated with remote diffusion-weighted imaging lesions in spontaneous intracerebral hemorrhage. Front Neurol. 2018;9:209.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ye XH, Cai XL, Nie DL, et al. Stress-induced hyperglycemia and remote diffusion-weighted imaging lesions in primary intracerebral hemorrhage. Neurocrit Care. 2019;16:1–10.

    Google Scholar 

  39. Justicia C, Salas-Perdomo A, Perez-de-Puig I, et al. Uric acid is protective after cerebral ischemia/reperfusion in hyperglycemic mice. Transl Stroke Res. 2017;8(3):294–305.

    Article  CAS  PubMed  Google Scholar 

  40. Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.

    Article  PubMed  Google Scholar 

  41. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30.

    Article  PubMed  Google Scholar 

  42. Zazulia AR, Videen TO, Powers WJ. Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke. 2009;40(5):1638–43.

    Article  CAS  PubMed  Google Scholar 

  43. Vespa P, McArthur DL, Stein N, et al. Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med. 2012;40(6):1923–9.

    Article  CAS  PubMed  Google Scholar 

  44. Fam MD, Zeineddine HA, Eliyas JK, et al. CSF inflammatory response after intraventricular hemorrhage. Neurology. 2017;89(15):1553–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Meyer SF, Denorme F, Langhauser F, et al. Thromboinflammation in stroke brain damage. Stroke. 2016;47(4):1165–72.

    Article  PubMed  Google Scholar 

  47. Blanco-Colio LM, Martin-Ventura JL, de Teresa E, et al. Elevated ICAM-1 and MCP-1 plasma levels in subjects at high cardiovascular risk are diminished by atorvastatin treatment. Atorvastatin on inflammatory markers study: a substudy of achieve cholesterol targets fast with atorvastatin stratified titration. Am Heart J. 2007;153(5):881–8.

    Article  CAS  PubMed  Google Scholar 

  48. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868.

    Article  CAS  PubMed  Google Scholar 

  49. Goldstein LB, Amarenco P, Szarek M, et al. Hemorrhagic stroke in the stroke prevention by aggressive reduction in cholesterol levels study. Neurology. 2008;70(24 Part 2):2364–70.

    Article  CAS  PubMed  Google Scholar 

  50. Noda H, Iso H, Irie F, et al. Low-density lipoprotein cholesterol concentrations and death due to intraparenchymal hemorrhage: the Ibaraki Prefectural Health Study. Circulation. 2009;119(16):2136–45.

    Article  CAS  PubMed  Google Scholar 

  51. Biffi A, Devan WJ, Anderson CD, et al. Statin use and outcome after intracerebral hemorrhage: case–control study and meta-analysis. Neurology. 2011;76(18):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lei C, Chen T, Chen C, Ling Y. Pre-intracerebral hemorrhage and in-hospital statin use in intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg. 2018;111:47–54.

    Article  PubMed  Google Scholar 

  53. Lin MS, Lin YS, Chang ST, et al. Effect of initiating statin therapy on long-term outcomes of patients with dyslipidemia after intracerebral hemorrhage. Atherosclerosis. 2019;288:137–45.

    Article  CAS  PubMed  Google Scholar 

  54. McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage. Stroke. 2012;43(8):2149–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Project primarily supported by the American Heart Association Midwest Affiliate Grant 11CRP7520073 (RKG), and Rush University’s Department of Neurological Sciences (RKG). Additional support provided by NIBIB K25 EB012236 (SLS), R01EB024559 (SLS), and Wake Forest CTSI NCATS UL1TR001420 (SLS).

Author information

Authors and Affiliations

Authors

Contributions

RKG, Primary Author Designed study; coordinated research study; collected and analyzed data; drafted manuscript. JK, Major role in the acquisition of blood pressure data; data interpretation. RJD, Major role in design of MRI protocol; data interpretation; revised the manuscript for intellectual content. JC, Interpreted the data; revised the manuscript for intellectual content. SJ, Interpreted the data; revised the manuscript for intellectual content. SP, Assisted with study design; interpreted the data; revised the manuscript for intellectual content. MK, Adjudication of MRI data; interpreted the data; revised the manuscript for intellectual content. SB, MRI blinded reviewer; Interpreted the data; revised the manuscript for intellectual content. SLS, Assisted with polynomial statistical analysis; performed biostatistical review of the results; BO, Major role in the statistical analysis of the results; interpreted the data; revised the manuscript for intellectual content. MJ, Major role MRI protocol design. MRI blinded reviewer; interpreted the data; revised the manuscript for intellectual content. TPB, Senior Author Reviewed all MR imaging for safety concerns; provided oversight of study protocol; Interpreted the data; revised the manuscript for intellectual content.

Corresponding author

Correspondence to Rajeev K. Garg.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Ethical approval/informed consent

This study was approved by the Rush University Medical Center (RUMC) Institutional Review Board and ethics standards committee. Written informed consent was obtained from all competent participants or surrogate health care decision makers in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All work for this study was performed at Rush University Medical Center, Chicago, IL.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, R.K., Khan, J., Dawe, R.J. et al. The Influence of Diffusion Weighted Imaging Lesions on Outcomes in Patients with Acute Spontaneous Intracerebral Hemorrhage. Neurocrit Care 33, 552–564 (2020). https://doi.org/10.1007/s12028-020-00933-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-00933-3

Keywords

Navigation