Skip to main content

Advertisement

Log in

The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any?

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, with a high rate of mortality and morbidity. Even with the best current medical or surgical interventions, outcomes remain poor. The location and initial hematoma volume are strong predictors of mortality. Hematoma expansion (HE) is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for HE have been identified, including baseline ICH volume, anticoagulation, and computed tomography angiography spot signs. Recent studies have shown the correlation of serum calcium (Ca++) levels on admission with HE. Low serum Ca++ level has been associated with larger hematoma volume at the time of presentation, HE, and worse outcome. Although the causal and mechanistic links between low serum Ca++ level and HE are not well understood, several mechanisms have been proposed including coagulopathy, platelet dysfunction, and higher blood pressure (BP) in the context of low serum Ca++ level. However, low serum Ca++ level might be only a biomarker of the adaptive response due to acute inflammatory response following acute ICH. The purpose of the current review is to discuss the evidence regarding the possible role of low serum Ca++ level on HE in acute ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alerhand S, Lay C. Spontaneous intracerebral hemorrhage. Emerg Med Clin North Am. 2017;35:825–45.

    Article  PubMed  Google Scholar 

  2. Hevesi M, Bershad EM, Jafari M, et al. Untreated hypertension as predictor of in-hospital mortality in intracerebral hemorrhage: a multi-center study. J Crit Care. 2018;43:235–9.

    Article  PubMed  Google Scholar 

  3. Mayer SA. Intracerebral hemorrhage: natural history and rationale of ultra-early hemostatic therapy. Intensive Care Med. 2002;28(Suppl 2):S235–40.

    Article  PubMed  Google Scholar 

  4. Veltkamp R, Purrucker J. Management of spontaneous intracerebral hemorrhage. Curr Neurol Neurosci Rep. 2017;17:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng WJ, Reis C, Reis H, Zhang J, Yang J. Predictive value of CTA spot sign on hematoma expansion in intracerebral hemorrhage patients. Biomed Res Int. 2017;4137210:9.

    Google Scholar 

  6. Anderson CS, Heeley E, Huang Y, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368:2355–65.

    Article  CAS  PubMed  Google Scholar 

  7. Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352:777–85.

    Article  CAS  PubMed  Google Scholar 

  8. Morotti A, Charidimou A, Phuah CL, et al. Association between serum calcium level and extent of bleeding in patients with intracerebral hemorrhage. JAMA Neurol. 2016;73:1285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Inoue Y, Miyashita F, Toyoda K, Minematsu K. Low serum calcium levels contribute to larger hematoma volume in acute intracerebral hemorrhage. Stroke. 2013;44:2004–6.

    Article  CAS  PubMed  Google Scholar 

  10. Iso H, Stampfer MJ, Manson JE, et al. Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke. 1999;30:1772–9.

    Article  CAS  PubMed  Google Scholar 

  11. Vadivel K, Agah S, Messer AS, et al. Structural and functional studies of gamma-carboxyglutamic acid domains of factor VIIa and activated Protein C: role of magnesium at physiological calcium. J Mol Biol. 2013;425:1961–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lauder SN, Allen-Redpath K, Slatter DA, et al. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Sci Signal. 2017;10:2787.

    Article  CAS  Google Scholar 

  13. Koklic T, Majumder R, Lentz BR. Ca(2 +) switches the effect of PS-containing membranes on factor Xa from activating to inhibiting: implications for initiation of blood coagulation. Biochem J. 2014;462:591–601.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman R, Benz EJ, Silberstein LE, Heslop H, Weitz J, Anastasi J. Hematology: basic principles and practice E-book. Philadelphia: Elsevier; 2017.

    Google Scholar 

  15. Awumey EM, Bridges LE, Williams CL, Diz DI. Nitric-oxide synthase knockout modulates Ca(2)(+)-sensing receptor expression and signaling in mouse mesenteric arteries. J Pharmacol Exp Ther. 2013;346:38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen S, Zhao B, Wang W, Shi L, Reis C, Zhang J. Predictors of hematoma expansion predictors after intracerebral hemorrhage. Oncotarget. 2017;8:89348–63.

    PubMed  PubMed Central  Google Scholar 

  17. Brouwers HB, Greenberg SM. Hematoma expansion following acute intracerebral hemorrhage: cerebrovascular diseases (Basel, Switzerland). Cerebrovasc Dis. 2013;35:195–201.

    Article  PubMed  Google Scholar 

  18. Guan J, Hawryluk GWJ. Targeting secondary hematoma expansion in spontaneous intracerebral hemorrhage—state of the art. Front Neurol. 2016;7:187.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sporns PB, Schwake M, Kemmling A, et al. Comparison of spot sign, blend sign and black hole sign for outcome prediction in patients with intracerebral hemorrhage. J Stroke. 2017;19:333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11:307–14.

    Article  PubMed  Google Scholar 

  21. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.

    Article  CAS  PubMed  Google Scholar 

  22. Delcourt C, Zhang S, Arima H, et al. Significance of hematoma shape and density in intracerebral hemorrhage: the intensive blood pressure reduction in acute intracerebral hemorrhage trial study. Stroke. 2016;47:1227–32.

    Article  CAS  PubMed  Google Scholar 

  23. Lim-Hing K, Rincon F. Secondary hematoma expansion and perihemorrhagic edema after intracerebral hemorrhage: from bench work to practical aspects. Front Neurol. 2017;8:74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Elwood E, Lim Z, Naveed H, Galea I. The effect of systemic inflammation on human brain barrier function. Brain Behav Immun. 2017;62:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23–30.

    Article  CAS  PubMed  Google Scholar 

  26. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016;4:16041.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holowaychuk MK. Hypocalcemia of critical illness in dogs and cats. Vet Clin North Am Small Anim Pract. 2013;43:1299–317.

    Article  PubMed  Google Scholar 

  28. Brown EM, Pollak M, Hebert SC. Sensing of extracellular Ca2 + by parathyroid and kidney cells: cloning and characterization of an extracellular Ca(2 +)-sensing receptor. Am J Kidney Dis. 1995;25:506–13.

    Article  CAS  PubMed  Google Scholar 

  29. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10:1257–72.

    Article  CAS  PubMed  Google Scholar 

  30. Fong J, Khan A. Hypocalcemia: updates in diagnosis and management for primary care. Can Fam Physician. 2012;58:158–62.

    PubMed  PubMed Central  Google Scholar 

  31. Ovbiagele B, Starkman S, Teal P, et al. Serum calcium as prognosticator in ischemic stroke. Stroke. 2008;39:2231–6.

    Article  CAS  PubMed  Google Scholar 

  32. Buck BH, Liebeskind DS, Saver JL, et al. Association of higher serum calcium levels with smaller infarct volumes in acute ischemic stroke. Arch Neurol. 2007;64:1287–91.

    Article  PubMed  Google Scholar 

  33. Ovbiagele B, Liebeskind DS, Starkman S, et al. Are elevated admission calcium levels associated with better outcomes after ischemic stroke? Neurology. 2006;67:170–3.

    Article  CAS  PubMed  Google Scholar 

  34. You S, Han Q, Xu J, et al. Serum calcium and phosphate levels and short- and long-term outcomes in acute intracerebral hemorrhage patients. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2016;25:914–20.

    Article  Google Scholar 

  35. Liu J, Wang D, Xiong Y, et al. A cohort study of relationship between serum calcium levels and cerebral microbleeds (CMBs) in ischemic stroke patients with AF and/or RHD. Medicine. 2016;95:e4033.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steele T, Kolamunnage-Dona R, Downey C, Toh C-H, Welters I. Assessment and clinical course of hypocalcemia in critical illness. Crit Care. 2013;17:R106.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brouwers HB, Greenberg SM. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis. 2013;35:195–201.

    Article  PubMed  Google Scholar 

  38. Aguilar MI, Freeman WD. Treatment of coagulopathy in intracranial hemorrhage. Curr Treat Options Neurol. 2010;12:113–28.

    Article  PubMed  Google Scholar 

  39. Maas MB, Rosenberg NF, Kosteva AR, Prabhakaran S, Naidech AM. Coagulopathy disproportionately predisposes to lobar intracerebral hemorrhage. Neurocrit Care. 2013;18:166–9.

    Article  PubMed  Google Scholar 

  40. Moran TA, Viele CS. Normal clotting. Semin Oncol Nurs. 2005;21:1–11.

    Article  PubMed  Google Scholar 

  41. Undas A. Prothrombotic fibrin clot phenotype in patients with deep vein thrombosis and pulmonary embolism: a new risk factor for recurrence. Biomed Res Int. 2017;8196256:27.

    Google Scholar 

  42. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24.

    Article  CAS  PubMed  Google Scholar 

  43. De Robertis E, Kozek-Langenecker SA, Tufano R, Romano GM, Piazza O, Zito Marinosci G. Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding. Minerva Anestesiol. 2015;81:65–75.

    PubMed  Google Scholar 

  44. Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65:951–60.

    Article  PubMed  Google Scholar 

  45. James MF, Roche AM. Dose-response relationship between plasma ionized calcium concentration and thrombelastography. J Cardiothorac Vasc Anesth. 2004;18:581–6.

    Article  CAS  PubMed  Google Scholar 

  46. Ho KM, Yip CB. Concentration-dependent effect of hypocalcaemia on in vitro clot strength in patients at risk of bleeding: a retrospective cohort study. Transfus Med. 2016;26:57–62.

    Article  CAS  PubMed  Google Scholar 

  47. Fukuda T, Nakashima Y, Harada M, et al. Effect of whole blood clotting time in rats with ionized hypocalcemia induced by rapid intravenous citrate infusion. J Toxicol Sci. 2006;31:229–34.

    Article  CAS  PubMed  Google Scholar 

  48. Guo Y, Yan S, Zhang S, et al. Lower serum calcium level is associated with hemorrhagic transformation after thrombolysis. Stroke. 2015;46:1359–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giancarelli A, Birrer KL, Alban RF, Hobbs BP, Liu-DeRyke X. Hypocalcemia in trauma patients receiving massive transfusion. J Surg Res. 2016;202:182–7.

    Article  CAS  PubMed  Google Scholar 

  50. Naidech AM, Jovanovic B, Liebling S, et al. Reduced platelet activity is associated with early clot growth and worse 3-month outcome after intracerebral hemorrhage. Stroke. 2009;40:2398–401.

    Article  PubMed  Google Scholar 

  51. Naidech AM, Bendok BR, Garg RK, et al. Reduced platelet activity is associated with more intraventricular hemorrhage. Neurosurgery. 2009;65:684–8.

    Article  PubMed  Google Scholar 

  52. Nesbitt WS, Giuliano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP. Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol. 2003;160:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:1687–93.

    Article  CAS  PubMed  Google Scholar 

  54. Goto S, Tamura N, Ishida H, Ruggeri ZM. Dependence of platelet thrombus stability on sustained glycoprotein IIb/IIIa activation through adenosine 5’-diphosphate receptor stimulation and cyclic calcium signaling. J Am Coll Cardiol. 2006;47:155–62.

    Article  CAS  PubMed  Google Scholar 

  55. Kamae T, Shiraga M, Kashiwagi H, et al. Critical role of ADP interaction with P2Y12 receptor in the maintenance of alpha(IIb)beta3 activation: association with Rap1B activation. J Thromb Haemost. 2006;4:1379–87.

    Article  CAS  PubMed  Google Scholar 

  56. Sangkuhl K, Shuldiner AR, Klein TE, Altman RB. Platelet aggregation pathway. Pharmacogenet Genomics. 2011;21:516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson SP, Nesbitt WS, Kulkarni S. Signaling events underlying thrombus formation. J Thromb Haemost. 2003;1:1602–12.

    Article  CAS  PubMed  Google Scholar 

  58. Qi H, Huang Y, Yang Y, et al. Anti-platelet activity of panaxatriol saponins is mediated by suppression of intracellular calcium mobilization and ERK2/p38 activation. BMC Complement Altern Med. 2016;16:016–1160.

    Article  CAS  Google Scholar 

  59. Rumbaut RE, Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Book  Google Scholar 

  60. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008;60:3–11.

    CAS  PubMed  Google Scholar 

  61. Joo S-J. Mechanisms of platelet activation and integrin αIIβ3. Korean Circ J. 2012;42:295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest. 2005;115:3355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dastur CK, Yu W. Current management of spontaneous intracerebral haemorrhage. Stroke Vasc Neurol. 2017;2:21–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Emiru T, Bershad EM, Zantek ND, et al. Intracerebral hemorrhage: a review of coagulation function. Clin Appl Thromb Hemost. 2013;19:652–62.

    Article  PubMed  Google Scholar 

  65. Margolis KL, Ray RM, Van Horn L, et al. Effect of calcium and vitamin D supplementation on blood pressure: the Women’s Health Initiative Randomized Trial. Hypertension. 2008;52:847–55.

    Article  CAS  PubMed  Google Scholar 

  66. Zemel MB. Calcium modulation of hypertension and obesity: mechanisms and implications. J Am Coll Nutr. 2001;20:440S–2S.

    Article  Google Scholar 

  67. Tfelt-Hansen J, Schwarz P, Brown EM, Chattopadhyay N. The calcium-sensing receptor in human disease. Front Biosci. 2003;8:s377–90.

    Article  CAS  PubMed  Google Scholar 

  68. Chattopadhyay N, Brown EM. Role of calcium-sensing receptor in mineral ion metabolism and inherited disorders of calcium-sensing. Mol Genet Metab. 2006;89:189–202.

    Article  CAS  PubMed  Google Scholar 

  69. Greenberg HZ, Shi J, Jahan KS, et al. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels. Vasc Pharmacol. 2016;80:75–84.

    Article  CAS  Google Scholar 

  70. Loot AE, Pierson I, Syzonenko T, et al. Ca2 + -sensing receptor cleavage by calpain partially accounts for altered vascular reactivity in mice fed a high-fat diet. J Cardiovasc Pharmacol. 2013;61:528–35.

    Article  CAS  PubMed  Google Scholar 

  71. Smajilovic S, Yano S, Jabbari R, Tfelt-Hansen J. The calcium-sensing receptor and calcimimetics in blood pressure modulation. Br J Pharmacol. 2011;164:884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ortiz-Capisano MC, Liao TD, Ortiz PA, Beierwaltes WH. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells. Am J Physiol Regul Integr Comp Physiol. 2009;297:9.

    Article  CAS  Google Scholar 

  73. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27:894–908.

    Article  CAS  PubMed  Google Scholar 

  74. Boehme AK, Comeau ME, Langefeld CD, et al. Systemic inflammatory response syndrome, infection, and outcome in intracerebral hemorrhage. Neurol Neuroimmunol Neuroinflamm. 2017;5:e428.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Boehme AK, Hays AN, Kicielinski KP, et al. Systemic inflammatory response syndrome and outcomes in intracerebral hemorrhage. Neurocrit Care. 2016;25:133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Z, Xu X, Ni H, Deng H. Predictive value of ionized calcium in critically ill patients: an analysis of a large clinical database MIMIC II. PLoS ONE. 2014;9:e95204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hastbacka J, Pettila V. Prevalence and predictive value of ionized hypocalcemia among critically ill patients. Acta Anaesthesiol Scand. 2003;47:1264–9.

    Article  CAS  PubMed  Google Scholar 

  79. Holowaychuk MK, Hansen BD, DeFrancesco TC, Marks SL. Ionized hypocalcemia in critically ill dogs. J Vet Intern Med. 2009;23:509–13.

    Article  CAS  PubMed  Google Scholar 

  80. Shahbaz AU, Zhao T, Zhao W, et al. Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. Am J Physiol Heart Circ Physiol. 2011;300:H636–44.

    Article  CAS  PubMed  Google Scholar 

  81. Kelly A, Levine MA. Hypocalcemia in the critically ill patient. J Intensive Care Med. 2013;28:166–77.

    Article  PubMed  Google Scholar 

  82. Liotta EM, Prabhakaran S, Sangha RS, et al. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage. Neurology. 2017;89:813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Canaff L, Zhou X, Hendy GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem. 2008;283:13586–600.

    Article  CAS  PubMed  Google Scholar 

  84. Yusuf J, Khan MU, Cheema Y, Bhattacharya SK, Weber KT. Disturbances in calcium metabolism and cardiomyocyte necrosis: the role of calcitropic hormones. Prog Cardiovasc Dis. 2012;55:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chhokar VS, Sun Y, Bhattacharya SK, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005;111:871–8.

    Article  CAS  PubMed  Google Scholar 

  86. Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65:1333–46.

    Article  CAS  PubMed  Google Scholar 

  87. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chung JW, Ryu WS, Kim BJ, Yoon BW. Elevated calcium after acute ischemic stroke: association with a poor short-term outcome and long-term mortality. J Stroke. 2015;17:54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Walker GL, Williamson PM, Ravich RB, Roche J. Hypercalcaemia associated with cerebral vasospasm causing infarction. J Neurol Neurosurg Psychiatry. 1980;43:464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and performed the manuscript preparation, editing, and review.

Corresponding author

Correspondence to Afshin A. Divani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Di Napoli, M., Datta, Y.H. et al. The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any?. Neurocrit Care 31, 188–195 (2019). https://doi.org/10.1007/s12028-018-0564-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0564-2

Keywords

Navigation