Skip to main content

Advertisement

Log in

Prediction of Shunt Dependency After Intracerebral Hemorrhage and Intraventricular Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Spontaneous intracerebral hemorrhage is a disease with high morbidity and mortality. Extension of the hemorrhage into the ventricles is associated with the development of acute hydrocephalus and a poor outcome. Although it can be managed by external ventricular drainage (EVD), a subset of these patients require placement of permanent ventricular shunts. This study aimed to examine the factors on admission that can predict shunt dependency after EVD management.

Methods

Seventy-two patients who underwent EVD were included in this study. Seventeen of these patients underwent placement of a ventriculoperitoneal shunt. Variables analyzed included age, intraventricular hemorrhage (IVH) score, bicaudate index, acute hydrocephalus, initial Glasgow Coma Scale scores, and blood volume in each ventricle.

Results

In univariate analysis, IVH score (p = 0.020), bicaudate index (p < 0.001), blood volume in lateral ventricles (p = 0.025), blood volume in the fourth ventricle (p = 0.038), and the ratio of blood volume in lateral ventricles to that in third and fourth ventricles (p = 0.003) were significantly associated with persistent hydrocephalus. The best multiple logistic regression model included blood volume parameters and bicaudate index as predictors with the area under a receiver operating characteristic curve of 0.849. The variance inflation factor (VIF) showed that collinearity was not found among predictors. Patients diagnosed with acute hydrocephalus had less blood volume in the lateral ventricles (OR = 0.910) and had more blood volume in the third ventricle (OR = 3.174) and fourth ventricle (OR = 2.126).

Conclusions

These findings may promote more aggressive monitoring and earlier interventions for persistent hydrocephalus after intraventricular hemorrhage in patients at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–52.

    Article  PubMed  Google Scholar 

  2. Leira R, Davalos A, Silva Y, Gil-Peralta A, Tejada J, Garcia M, Castillo J. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology. 2004;63(3):461–7.

    Article  CAS  PubMed  Google Scholar 

  3. Tuhrim S, Horowitz DR, Sacher M, Godbold JH. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med. 1999;27(3):617–21.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattathiri PS, Gregson B, Prasad KS, Mendelow AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hallevi H, Albright KC, Aronowski J, Barreto AD, Martin-Schild S, Khaja AM, Gonzales NR, Illoh K, Noser EA, Grotta JC. Intraventricular hemorrhage: anatomic relationships and clinical implications. Neurology. 2008;70(11):848–52.

    Article  CAS  PubMed  Google Scholar 

  6. Diringer MN, Edwards DF, Zazulia AR. Hydrocephalus: a previously unrecognized predictor of poor outcome from supratentorial intracerebral hemorrhage. Stroke J Cereb Circ. 1998;29(7):1352–7.

    Article  CAS  Google Scholar 

  7. Juvela S. Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch Neurol. 1995;52(12):1193–200.

    Article  CAS  PubMed  Google Scholar 

  8. Adams RE, Diringer MN. Response to external ventricular drainage in spontaneous intracerebral hemorrhage with hydrocephalus. Neurology. 1998;50(2):519–23.

    Article  CAS  PubMed  Google Scholar 

  9. Engelhard HH, Andrews CO, Slavin KV, Charbel FT. Current management of intraventricular hemorrhage. Surg Neurol. 2003;60(1):15–21.

    Article  PubMed  Google Scholar 

  10. Findlay JM, Jacka MJ. Cohort study of intraventricular thrombolysis with recombinant tissue plasminogen activator for aneurysmal intraventricular hemorrhage. Neurosurgery. 2004;55(3):532–7.

    Article  PubMed  Google Scholar 

  11. Gaberel T, Magheru C, Parienti JJ, Huttner HB, Vivien D, Emery E. Intraventricular fibrinolysis versus external ventricular drainage alone in intraventricular hemorrhage: a meta-analysis. Stroke J Cereb Circ. 2011;42(10):2776–81.

    Article  Google Scholar 

  12. Varelas PN, Rickert KL, Cusick J, Hacein-Bey L, Sinson G, Torbey M, Spanaki M, Gennarelli TA. Intraventricular hemorrhage after aneurysmal subarachnoid hemorrhage: pilot study of treatment with intraventricular tissue plasminogen activator. Neurosurgery. 2005;56(2):205–13.

    Article  PubMed  Google Scholar 

  13. Hallevi H, Dar NS, Barreto AD, Morales MM, Martin-Schild S, Abraham AT, Walker KC, Gonzales NR, Illoh K, Grotta JC, Savitz SI. The IVH score: a novel tool for estimating intraventricular hemorrhage volume: clinical and research implications. Crit Care Med. 2009;37(3):969–974, e961.

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Gijn J, Hijdra A, Wijdicks EF, Vermeulen M, van Crevel H. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 1985;63(3):355–62.

    Article  PubMed  Google Scholar 

  15. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13:146–68.

    Article  Google Scholar 

  16. Liu CC, Tsai CY, Liu J, Yu CY, Yu SS. A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis. Comput Math Appl. 2012;64:1100–7.

    Article  Google Scholar 

  17. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–8.

    Article  Google Scholar 

  18. Koch GG. Intraclass correlation coefficient. In: Kotz S, Johnson NL, editors. Encyclopedia of statistical sciences. 4th ed. New York: Wiley; 1982. p. 213–7.

    Google Scholar 

  19. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    Article  CAS  PubMed  Google Scholar 

  20. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  21. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4(2):627–35.

    PubMed  PubMed Central  Google Scholar 

  22. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747.

    Article  CAS  PubMed  Google Scholar 

  23. Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology. 2003;229(1):3–8. https://doi.org/10.1148/radiol.2291010898.

    Article  PubMed  Google Scholar 

  24. Herrick DB, Ullman N, Nekoovaght-Tak S, Hanley DF, Awad I, LeDroux S, Thompson CB, Ziai WC. Determinants of external ventricular drain placement and associated outcomes in patients with spontaneous intraventricular hemorrhage. Neurocrit Care. 2014;21(3):426–34. https://doi.org/10.1007/s12028-014-9959-x.

    Article  PubMed  Google Scholar 

  25. Cheung RT, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke J Cereb Circ. 2003;34(7):1717–22.

    Article  Google Scholar 

  26. Zacharia BE, Vaughan KA, Hickman ZL, Bruce SS, Carpenter AM, Petersen NH, Deiner S, Badjatia N, Connolly ES Jr. Predictors of long-term shunt-dependent hydrocephalus in patients with intracerebral hemorrhage requiring emergency cerebrospinal fluid diversion. Neurosurg Focus. 2012;32(4):E5. https://doi.org/10.3171/2012.2.FOCUS11372.

    Article  PubMed  Google Scholar 

  27. Miller C, Tsivgoulis G, Nakaji P. Predictors of ventriculoperitoneal shunting after spontaneous intraparenchymal hemorrhage. Neurocrit Care. 2008;8(2):235–40. https://doi.org/10.1007/s12028-007-9018-y.

    Article  PubMed  Google Scholar 

  28. Rincon F, Gordon E, Starke RM, Buitrago MM, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Frontera J, Seder DB, Palestrant D, Connolly ES, Lee K, Mayer SA, Badjatia N. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Clinical article. J Neurosurg. 2010;113(4):774–80.

    Article  PubMed  Google Scholar 

  29. Staykov D, Kuramatsu JB, Bardutzky J, Volbers B, Gerner ST, Kloska SP, Doerfler A, Schwab S, Huttner HB. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: a randomized trial and individual patient data meta-analysis. Ann Neurol. 2017;81(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  30. Kukuljan M, Kolic Z, Bonifacic D, Vukas D, Miletic D. Normal bicaudate index by aging. J Med Image Rev. 2009;5:72–4.

    Article  Google Scholar 

  31. Hwang BY, Bruce SS, Appelboom G, Piazza MA, Carpenter AM, Gigante PR, Kellner CP, Ducruet AF, Kellner MA, Deb-Sen R, Vaughan KA, Meyers PM, Connolly ES Jr. Evaluation of intraventricular hemorrhage assessment methods for predicting outcome following intracerebral hemorrhage. J Neurosurg. 2012;116(1):185–92. https://doi.org/10.3171/2011.9.JNS10850.

    Article  PubMed  Google Scholar 

  32. Chen CC, Liu CL, Tung YN, Lee HC, Chuang HC, Lin SZ, Cho DY. Endoscopic surgery for intraventricular hemorrhage (IVH) caused by thalamic hemorrhage: comparisons of endoscopic surgery and external ventricular drainage (EVD) surgery. World Neurosurg. 2011;75(2):264–8.

    Article  PubMed  Google Scholar 

  33. Lodhia KR, Shakui P, Keep RF. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl. 2006;96:207–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

L-T Kuo provided research conception, collected clinical data and wrote manuscript. Dr. Kuo also made final approval of the version to be published. H-Y Lu conducted imaging process and statistical analysis, interpreted research data and wrote manuscript. Dr. Lu also made final approval of the published version. J-C Tsai helped in data analysis and manuscript evaluation. Y-K Tu contributed to data collection and manuscript revision.

Corresponding author

Correspondence to Hsueh-Yi Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by National Taiwan University Hospital’s Institutional Review Board (IRB case #201211025RIB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, LT., Lu, HY., Tsai, JC. et al. Prediction of Shunt Dependency After Intracerebral Hemorrhage and Intraventricular Hemorrhage. Neurocrit Care 29, 233–240 (2018). https://doi.org/10.1007/s12028-018-0532-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-018-0532-x

Keywords

Navigation