Skip to main content

Advertisement

Log in

Glibenclamide and Therapeutic Hypothermia Have Comparable Effect on Attenuating Global Cerebral Edema Following Experimental Cardiac Arrest

  • Translational research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebral edema is one of the major causes of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). A subunit of the sulfonylurea receptor 1–transient receptor potential M4 (Sur1–TRPM4) channel has been implicated in the pathogenesis of ischemia-evoked cerebral edema. In this study, we examined whether glibenclamide (GBC), a Sur1–TRPM4 channel inhibitor, attenuates cerebral edema following CA/CPR and further examined the efficacy of GBC combined with therapeutic hypothermia.

Methods

Isoflurane-anesthetized adult male wild-type C57Bl/6 mice subjected to 7-min CA/CPR were randomized into five groups: sham operation, control with normothermia, GBC with normothermia, control with hypothermia, and GBC with hypothermia. The primary outcome was to evaluate regional brain water content; the secondary outcome was to measure blood glucose level, Sur1–TRPM4 expression, and pro-inflammatory factor expression.

Results

Compared with normothermia, GBC treatment or hypothermia significantly attenuated brain water content in mice subjected to CA/CPR. GBC combined with hypothermia had no additional effects on attenuating cerebral edema. Pro-inflammatory factor messenger RNA expression (TNF-α and IL-6), NFκβ activation, and SUR1–TRPM4 levels were upregulated after CA/CPR. Compared with normothermia, hypothermia, but not GBC, partly suppressed these factors’ expression.

Conclusions

GBC attenuated cerebral edema following CA/CPR by blocking Sur1–TRPM4 channels upregulated by CA insult. The effect of GBC was comparable with that of therapeutic hypothermia alone. These results suggest that GBC is an alternative approach for treating CA-evoked cerebral edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morimoto Y, Kemmotsu O, Kitami K, Matsubara I, Tedo I. Acute brain swelling after out-of-hospital cardiac arrest: pathogenesis and outcome. Crit Care Med. 1993;21(1):104–10.

    Article  PubMed  CAS  Google Scholar 

  2. Adrie C, Haouache H, Saleh M, Memain N, Laurent I, Thuong M, Darques L, Guerrini P, Monchi M. An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med. 2008;34(1):132–7. https://doi.org/10.1007/s00134-007-0885-7.

    Article  PubMed  CAS  Google Scholar 

  3. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82. https://doi.org/10.1161/CIR.0000000000000262.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Filippidis AS, Carozza RB, Rekate HL. Aquaporins in brain edema and neuropathological conditions. Int J Mol Sci. 2016;. https://doi.org/10.3390/ijms18010055.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012;9:279. https://doi.org/10.1186/1742-2094-9-279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38. https://doi.org/10.1177/0271678X15617172.

    Article  PubMed  CAS  Google Scholar 

  7. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40. https://doi.org/10.1038/nm1390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zweckberger K, Hackenberg K, Jung CS, Hertle DN, Kiening KL, Unterberg AW, Sakowitz OW. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience. 2014;272:199–206. https://doi.org/10.1016/j.neuroscience.2014.04.040.

    Article  PubMed  CAS  Google Scholar 

  9. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29(2):317–30. https://doi.org/10.1038/jcbfm.2008.120.

    Article  PubMed  CAS  Google Scholar 

  10. Wu Z, Zhu SZ, Hu YF, Gu Y, Wang SN, Lin ZZ, Xie ZS, Pan SY. Glibenclamide enhances the effects of delayed hypothermia after experimental stroke in rats. Brain Res. 2016;1643:113–22. https://doi.org/10.1016/j.brainres.2016.04.067.

    Article  PubMed  CAS  Google Scholar 

  11. Huang K, Gu Y, Hu Y, Ji Z, Wang S, Lin Z, Li X, Xie Z, Pan S. Glibenclamide improves survival and neurologic outcome after cardiac arrest in rats. Crit Care Med. 2015;43(9):e341–9. https://doi.org/10.1097/CCM.0000000000001093.

    Article  PubMed  CAS  Google Scholar 

  12. Huang K, Wang Z, Gu Y, Hu Y, Ji Z, Wang S, Lin Z, Li X, Xie Z, Pan S. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats. J Am Heart Assoc. 2016;. https://doi.org/10.1161/JAHA.116.003465.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Conivaptan, a selective arginine vasopressin V1a and V2 receptor antagonist attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Neurocrit Care. 2016;24(2):273–82. https://doi.org/10.1007/s12028-015-0236-4.

    Article  PubMed  CAS  Google Scholar 

  14. Kofler J, Hattori K, Sawada M, DeVries AC, Martin LJ, Hurn PD, Traystman RJ. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods. 2004;136(1):33–44. https://doi.org/10.1016/j.jneumeth.2003.12.024.

    Article  PubMed  Google Scholar 

  15. Ye S, Weng Y, Sun S, Chen W, Wu X, Li Z, Weil MH, Tang W. Comparison of the durations of mild therapeutic hypothermia on outcome after cardiopulmonary resuscitation in the rat. Circulation. 2012;125(1):123–9. https://doi.org/10.1161/CIRCULATIONAHA.111.062257.

    Article  PubMed  Google Scholar 

  16. Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36(9):2634–40. https://doi.org/10.1097/CCM.0b013e3181847853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen CH, Toung TJ, Sapirstein A, Bhardwaj A. Effect of duration of osmotherapy on blood-brain barrier disruption and regional cerebral edema after experimental stroke. J Cereb Blood Flow Metab. 2006;26(7):951–8. https://doi.org/10.1038/sj.jcbfm.9600248.

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci. 2013;51(1):92–8. https://doi.org/10.1007/s12031-013-0005-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99(20):13131–6. https://doi.org/10.1073/pnas.192457099.

    Article  PubMed  CAS  Google Scholar 

  20. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100(4):2106–11. https://doi.org/10.1073/pnas.0437946100.

    Article  PubMed  CAS  Google Scholar 

  21. Frydenlund DS, Bhardwaj A, Otsuka T, Mylonakou MN, Yasumura T, Davidson KG, Zeynalov E, Skare O, Laake P, Haug FM, Rash JE, Agre P, Ottersen OP, Amiry-Moghaddam M. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103(36):13532–6. https://doi.org/10.1073/pnas.0605796103.

    Article  PubMed  CAS  Google Scholar 

  22. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3. https://doi.org/10.1096/fj.04-1723fje.

    Article  PubMed  CAS  Google Scholar 

  23. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259–77. https://doi.org/10.1038/nrd4226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sullivan HC, Harik SI. ATP-sensitive potassium channels are not expressed in brain microvessels. Brain Res. 1993;612(1–2):336–8.

    Article  PubMed  CAS  Google Scholar 

  25. Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci. 2001;21(17):6512–21.

    Article  PubMed  CAS  Google Scholar 

  26. Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke. 2010;41(3):531–7. https://doi.org/10.1161/STROKEAHA.109.572644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Arrich J, Holzer M, Havel C, Mullner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database syst Rev. 2012;. https://doi.org/10.1002/14651858.CD004128.pub3.

    Article  PubMed  Google Scholar 

  28. Janata A, Holzer M. Hypothermia after cardiac arrest. Prog Cardiovasc Dis. 2009;52(2):168–79. https://doi.org/10.1016/j.pcad.2009.07.001.

    Article  PubMed  Google Scholar 

  29. Xiao F, Zhang S, Arnold TC, Alexander JS, Huang J, Carden DL, Conrad SA. Mild hypothermia induced before cardiac arrest reduces brain edema formation in rats. Acad Emerg Med. 2002;9(2):105–14.

    Article  PubMed  Google Scholar 

  30. Zhao H, Li CS, Gong P, Tang ZR, Hua R, Mei X, Zhang MY, Cui J. Molecular mechanisms of therapeutic hypothermia on neurological function in a swine model of cardiopulmonary resuscitation. Resuscitation. 2012;83(7):913–20. https://doi.org/10.1016/j.resuscitation.2012.01.001.

    Article  PubMed  CAS  Google Scholar 

  31. Gong P, Hua R, Zhang Y, Zhao H, Tang Z, Mei X, Zhang M, Cui J, Li C. Hypothermia-induced neuroprotection is associated with reduced mitochondrial membrane permeability in a swine model of cardiac arrest. J Cereb Blood Flow Metab. 2013;33(6):928–34. https://doi.org/10.1038/jcbfm.2013.33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003;23(5):589–98. https://doi.org/10.1097/01.wcb.0000059566.39780.8d.

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev. 2006;210:171–86. https://doi.org/10.1111/j.0105-2896.2006.00375.x.

    Article  PubMed  Google Scholar 

  34. Mortola JP. Implications of hypoxic hypometabolism during mammalian ontogenesis. Respir Physiol Neurobiol. 2004;141(3):345–56. https://doi.org/10.1016/j.resp.2004.01.011.

    Article  PubMed  Google Scholar 

  35. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab. 1999;19(7):742–9. https://doi.org/10.1097/00004647-199907000-00003.

    Article  PubMed  CAS  Google Scholar 

  36. Huh PW, Belayev L, Zhao W, Koch S, Busto R, Ginsberg MD. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg. 2000;92(1):91–9. https://doi.org/10.3171/jns.2000.92.1.0091.

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Li C, Yuan W, Wu J, Li J, Li Z, Zhao Y. Mild hypothermia alleviates brain edema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation. PLoS ONE. 2017;12(3):e0174596. https://doi.org/10.1371/journal.pone.0174596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xiao F, Arnold TC, Zhang S, Brown C, Alexander JS, Carden DL, Conrad SA. Cerebral cortical aquaporin-4 expression in brain edema following cardiac arrest in rats. Acad Emerg Med. 2004;11(10):1001–7. https://doi.org/10.1197/j.aem.2004.05.026.

    Article  PubMed  Google Scholar 

  39. Negroni JA, Lascano EC, del Valle HF. Glibenclamide action on myocardial function and arrhythmia incidence in the healthy and diabetic heart. Cardiovasc Hematol Agents Med Chem. 2007;5(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  40. Munoz A, Nakazaki M, Goodman JC, Barrios R, Onetti CG, Bryan J, Aguilar-Bryan L. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels. Stroke. 2003;34(1):164–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 17K11564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Nakayama.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, S., Taguchi, N., Isaka, Y. et al. Glibenclamide and Therapeutic Hypothermia Have Comparable Effect on Attenuating Global Cerebral Edema Following Experimental Cardiac Arrest. Neurocrit Care 29, 119–127 (2018). https://doi.org/10.1007/s12028-017-0479-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-017-0479-3

Keywords

Navigation