Skip to main content

Advertisement

Log in

Effect of High-Dose Simvastatin on Cerebral Blood Flow and Static Autoregulation in Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Statins may promote vasodilation following subarachnoid hemorrhage (SAH) and improve the response to blood pressure elevation. We sought to determine whether simvastatin increases cerebral blood flow (CBF) and alters the response to induced hypertension after SAH.

Methods

Statin-naïve patients admitted <72 h after WFNS ≥2 aneurysmal SAH were randomly assigned to 80 mg simvastatin/day or placebo for 21 days. Regional CBF was measured with quantitative 15O PET on SAH day 7–10 before and after raising mean arterial pressure (MAP) 20–25 %. Autoregulatory index (AI) was calculated as the ratio of % change in resistance (MAP/CBF) to % change in MAP. Angiography was performed within 24 h of PET. Results are presented as simvastatin vs. placebo.

Results

Thirteen patients received simvastatin and 12 placebo. Clinical characteristics were similar. Moderate or severe angiographic vasospasm occurred in 42 vs. 45 % and delayed cerebral ischemia in 14 vs. 55 % (p = 0.074). During PET studies, MAP (110 ± 10 vs. 111 ± 12), global CBF (41 ± 12 vs. 43 ± 13), and CVR (2.95 ± 1.0 vs. 2.81 ± 1.0) did not differ at baseline. When MAP was raised to 135 ± 7 mm Hg vs. 137 ± 15, global CBF did not change. Global AI did not differ (107 ± 59 vs. 0. 89 ± 52 %, p = 0.68). CBF did not change in regions with low baseline flow or in regions supplied by vessels with angiographic vasospasm in either group. Six-month modified Rankin Scale scores did not differ.

Conclusions

Our data indicate that initiation of therapy with high-dose simvastatin does not alter baseline CBF or response to induced hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosengart AJ, et al. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:2315–21.

    Article  PubMed  Google Scholar 

  2. Tseng MY, et al. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32.

    Article  CAS  PubMed  Google Scholar 

  3. Lynch JR, et al. Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke. 2005;36:2024–6.

    Article  CAS  PubMed  Google Scholar 

  4. Tseng MY, et al. Effects of acute treatment with statins on cerebral autoregulation in patients after aneurysmal subarachnoid hemorrhage. Neurosurg Focus. 2006;21:E10.

    Article  PubMed  Google Scholar 

  5. Tseng MY, et al. Biological effects of acute pravastatin treatment in patients after aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled trial. J Neurosurg. 2007;107:1092–100.

    Article  CAS  PubMed  Google Scholar 

  6. Kirkpatrick PJ et al. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. 1474-4465 (electronic).

  7. Endres M, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95(15):8880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamada M, et al. Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by l-arginine after chronic statin treatment. J Cereb Blood Flow Metab. 2000;20(4):709–17.

    Article  CAS  PubMed  Google Scholar 

  9. Amin-Hanjani S, et al. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32(4):980–6.

    Article  CAS  PubMed  Google Scholar 

  10. McGirt MJ, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke. 2002;33(12):2950–6.

    Article  CAS  PubMed  Google Scholar 

  11. Mintun MA, et al. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25(2):177–87.

    CAS  PubMed  Google Scholar 

  12. Raichle ME, et al. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983;24(9):790–8.

    CAS  PubMed  Google Scholar 

  13. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983;24(9):782–9.

    CAS  PubMed  Google Scholar 

  14. Videen TO, et al. Brain blood volume, flow, and oxygen utilization measured with 15O radiotracers and positron emission tomography: revised metabolic computations. J Cereb Blood Flow Metab. 1987;7(4):513–6.

    Article  CAS  PubMed  Google Scholar 

  15. Martin WR, Powers WJ, Raichle ME. Cerebral blood volume measured with inhaled C15O and positron emission tomography. J Cereb Blood Flow Metab. 1987;7(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  16. Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992;16(4):620–33.

    Article  CAS  PubMed  Google Scholar 

  17. Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comput Assist Tomogr. 1993;17(4):536–46.

    Article  CAS  PubMed  Google Scholar 

  18. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

    Google Scholar 

  19. Yundt KD, et al. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998;18(4):419–24.

    Article  CAS  PubMed  Google Scholar 

  20. Powers WJ, et al. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab. 1985;5(4):600–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tiecks FP, et al. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26(6):1014–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dhar R, et al. Relationship between angiographic vasospasm and regional hypoperfusion in aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1788–94.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tseng M-Y, et al. Effects of acute treatment with statins on cerebral autoregulation in patients after aneurysmal subarachnoid hemorrhage. Neurosurg Focus. 2006;21:E10.

    Article  PubMed  Google Scholar 

  24. Kirkpatrick PJ, et al. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol. 2014;13(7):666–75.

    Article  CAS  PubMed  Google Scholar 

  25. Wong GK, et al. High-dose simvastatin for aneurysmal subarachnoid hemorrhage: multicenter randomized controlled double-blinded clinical trial. Stroke. 2015;46(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  26. Macdonald RL. Are statins to be STASHed in subarachnoid haemorrhage? Lancet Neurol. 2014;13(7):639–41.

    Article  PubMed  Google Scholar 

  27. Powers WJ. Acute hypertension after stroke: the scientific basis for treatment decisions. Neurology. 1993;43(3 Pt 1):461–7.

    Article  CAS  PubMed  Google Scholar 

  28. Heilbrun MP, Olesen J, Lassen NA. Regional cerebral blood flow studies in subarachnoid hemorrhage. J Neurosurg. 1972;37:36–44.

    Article  CAS  PubMed  Google Scholar 

  29. Voldby B, Enevoldsen EM, Jensen FT. Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg. 1985;62(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  30. Ishii R. Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg. 1979;50:587–94.

    Article  CAS  PubMed  Google Scholar 

  31. Budohoski KP, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33(3):449–56.

    Article  PubMed  Google Scholar 

  32. Budohoski KP, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7.

    Article  PubMed  Google Scholar 

  33. Jaeger M, et al. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38(3):981–6.

    Article  PubMed  Google Scholar 

  34. Ratsep T, Asser T. Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg. 2001;95(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  35. Lam JM, et al. Prediction of cerebral ischaemia during carotid endarterectomy with preoperative CO2-reactivity studies and angiography. Br J Neurosurg. 2000;14(5):441–8.

    Article  CAS  PubMed  Google Scholar 

  36. Giller CA. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir. 1991;108(1–2):7–14.

    Article  CAS  PubMed  Google Scholar 

  37. Tzeng YC, et al. Assessment of cerebral autoregulation: the quandary of quantification. Am J Physiol Heart Circ Physiol. 2012;303(6):H658–71.

    Article  CAS  PubMed  Google Scholar 

  38. Kosnik EJ, Hunt WE. Postoperative hypertension in the management of patients with intracranial arterial aneurysms. J Neurosurg. 1976;45:148–54.

    Article  CAS  PubMed  Google Scholar 

  39. Diringer MN, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40.

    Article  PubMed  Google Scholar 

  40. Darby JM, et al. Acute cerebral blood flow response to dopamine-induced hypertension after subarachnoid hemorrhage. J Neurosurg. 1994;80:857–64.

    Article  CAS  PubMed  Google Scholar 

  41. Joseph M, et al. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003;53(5):1044–51.

    Article  PubMed  Google Scholar 

  42. Gathier CS, et al. Effects of induced hypertension on cerebral perfusion in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke. 2015;46(11):3277–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH/NINDS: P50 NS055977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Diringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diringer, M.N., Dhar, R., Scalfani, M. et al. Effect of High-Dose Simvastatin on Cerebral Blood Flow and Static Autoregulation in Subarachnoid Hemorrhage. Neurocrit Care 25, 56–63 (2016). https://doi.org/10.1007/s12028-015-0233-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0233-7

Keywords

Navigation