Skip to main content
Log in

Relationship of Vascular Wall Tension and Autoregulation Following Traumatic Brain Injury

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The vascular wall tension (WT) of small cerebral vessels can be quantitatively estimated through the concept of critical closing pressure (CrCP), which denotes the lower limit of arterial blood pressure (ABP), below which small cerebral arterial vessels collapse and blood flow ceases. WT can be expressed as the difference between CrCP and intracranial pressure (ICP) and represent active vasomotor tone. In this study, we investigated the association of WT and CrCP with autoregulation and outcome of a large group of patients after traumatic brain injury (TBI).

Methods

We retrospectively analysed recordings of ABP, ICP and transcranial Doppler (TCD) blood flow velocity from 280 TBI patients (median age: 29 years; interquartile range: 20–43). CrCP and WT were calculated using the cerebrovascular impedance methodology. Autoregulation was assessed based on TCD-based indices, Mx and ARI.

Results

Low values of WT were found to be associated with an impaired autoregulatory capacity, signified by its correlation to FV-based indices Mx (R = −0.138; p = 0.021) and ARI (R = 0.118; p = 0.048). No relationship could be established between CrCP and any of the autoregulatory indices. Neither CrCP nor WT was found to correlate with outcome.

Conclusions

Impaired autoregulation was found to be associated with a lower WT supporting the role of vasoparalysis in the loss of autoregulatory capacity. In contrast, no links between CrCP and autoregulation could be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Overgaard J, Tweed WA. Cerebral circulation after head injury. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg. 1974;41:531–41.

    Article  PubMed  CAS  Google Scholar 

  2. Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma. 1992;9(Suppl):S333–48.

    PubMed  Google Scholar 

  3. Aaslid R. Cerebral hemodynamics. In: Newell DW, Aaslid R, editors. Transcranial doppler. New York: Raven Press; 1992. p. 49.

    Google Scholar 

  4. Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136:1118–23.

    Article  PubMed  CAS  Google Scholar 

  5. Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15:201–4.

    PubMed  CAS  Google Scholar 

  6. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.

    PubMed  CAS  Google Scholar 

  7. Czosnyka M, Price JD, Williamson M. Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochir (Wien). 1994;126(2–4):113–9.

    Article  CAS  Google Scholar 

  8. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:829–34.

    Article  Google Scholar 

  9. Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.

    PubMed  Google Scholar 

  10. Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics-vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41(5):597–606.

    Article  PubMed  CAS  Google Scholar 

  11. Michel E, Hillebrand S, von Twickel J, Zernikow B, Jorch G. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.

    Article  PubMed  CAS  Google Scholar 

  12. Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Schmidt E, Hiler M, Smielewski P, Pickard JD, Czosnyka M. Asymmetry of critical closing pressure following head injury. J Neurol Neurosurg Psychiatry. 2005;76:1570–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.

    Article  Google Scholar 

  15. de Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.

    Article  PubMed  Google Scholar 

  16. Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33:235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Varsos GV, Richards HK, Kasprowicz M, et al. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Neurocrit Care. 2014;20(1):40–8.

    Article  PubMed  Google Scholar 

  18. Varsos GV, de Riva N, Smielewski P, et al. Critical closing pressure during intracranial pressure plateau waves. Neurocrit Care. 2013;18:341–8.

    Article  PubMed  Google Scholar 

  19. Kolias AG, Guilfoyle MR, Helmy A, Allanson J, Hutchinson PJ. Traumatic brain injury in adults. Pract Neurol. 2013;13:228–35.

    Article  PubMed  Google Scholar 

  20. Menon DK, Wheeler DW. Neuronal injury and neuroprotection. Anaesth Intens Care. 2005;6:184–8.

    Article  Google Scholar 

  21. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88:802–8.

    Article  PubMed  CAS  Google Scholar 

  22. Czosnyka M, Balestreri M, Steiner L, et al. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005;102:450–4.

    Article  PubMed  Google Scholar 

  23. Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.

    Article  PubMed  CAS  Google Scholar 

  24. Budohoski KP, Czosnyka M, de Riva N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60.

    Article  PubMed  Google Scholar 

  25. Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three intracranial pressure microtransducers: technical report. Neurosurgery. 1996;38:219–24.

    Article  PubMed  CAS  Google Scholar 

  26. Carrera E, Kim DJ, Castellani G, et al. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2010;18:711–8.

    Article  PubMed  Google Scholar 

  27. Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16:213–8.

    Article  Google Scholar 

  28. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;95:756–63.

    Article  PubMed  CAS  Google Scholar 

  29. Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  30. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26:1014–9.

    Article  PubMed  CAS  Google Scholar 

  31. Panerai RB, Dawson SL, Potter JF. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol. 1999;277:H1089–99.

    PubMed  CAS  Google Scholar 

  32. Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T, Evans DH. Association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg. 2004;18:471–9.

    Article  PubMed  CAS  Google Scholar 

  33. Cold GE, Jensen FT. Cerebral autoregulation in unconscious patients with brain injury. Acta Anaesthesiol Scand. 1978;22:270–80.

    Article  PubMed  CAS  Google Scholar 

  34. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    PubMed  CAS  Google Scholar 

  35. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7.

    Article  PubMed  CAS  Google Scholar 

  36. O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–80.

    Article  PubMed  Google Scholar 

  37. Czosnyka M, Hutchinson P, Balesteri M, Hiler M, Smielewski P, Pickard JD. Monitoring and interpretation of intracranial pressure after head injury. Acta Neurochir. 2006;96:114–8.

    Article  CAS  Google Scholar 

  38. Czosnyka M, Smielewski P, Piechnik S, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Gordon Stevenson, PhD, from Evelyn Perinatal Imaging Center, Rosie Hospital, Cambridge, for proof reading of this article. GVV is supported by an A. G. Leventis Foundation Scholarship, and a Charter Studentship from St Edmund’s College, Cambridge. AGK is supported by a Royal College of Surgeons of England Research Fellowship, a National Institute for Health Research (NIHR) Academic Clinical Fellowship, and a Raymond and Beverly Sackler Studentship. PJH is supported by an NIHR Research Professorship, the NIHR Cambridge Biomedical Research Centre and has been appointed as the Surgical Specialty Lead for Neurosurgery, Royal College of Surgeons of England Clinical Research Initiative. JDP is supported by the NIHR Cambridge Biomedical Research Centre and an NIHR Senior Investigator Award. MC is NIHR Cambridge Biomedical Research Centre principal investigator on cerebrospinal dynamics.

Conflict of interest

ICM+ Software is licensed by Cambridge Enterprise, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus/. MC and PS have a financial interest in a fraction of the licensing fee. The corresponding author and the rest of the co-authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios V. Varsos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varsos, G.V., Budohoski, K.P., Kolias, A.G. et al. Relationship of Vascular Wall Tension and Autoregulation Following Traumatic Brain Injury. Neurocrit Care 21, 266–274 (2014). https://doi.org/10.1007/s12028-014-9971-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-9971-1

Keywords

Navigation