Skip to main content

Advertisement

Log in

Brain Tissue Oxygenation and Cerebral Perfusion Pressure Thresholds of Ischemia in a Standardized Pig Brain Death Model

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Neurointensive care of traumatic brain injury (TBI) patients is currently based on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) targeted protocols. Monitoring brain tissue oxygenation (BtipO2) is of considerable clinical interest, but the exact threshold level of ischemia has been difficult to establish due to the complexity of the clinical situation. The objective of this study was to use the Neurovent-PTO (NV) probe, and to define critical cerebral oxygenation- and CPP threshold levels of cerebral ischemia in a standardized brain death model caused by increasing the ICP in pig. Ischemia was defined by a severe increase of cerebral microdialysis (MD) lactate/pyruvate ratio (L/P ratio > 30).

Methods

BtipO2, L/P ratio, Glucose, Glutamate, Glycerol and CPP were recorded using NV and MD probes during gradual increase of ICP by inflation of an epidural balloon catheter with saline until brain death was achieved.

Results

Baseline level of BtipO2 was 22.9 ± 6.2 mmHg, the L/P ratio 17.7 ± 6.1 and CPP 73 ± 17 mmHg. BtipO2 and CPP decreased when intracranial volume was added. The L/P ratio increased above its ischemic levels, (>30) when CPP decreased below 30 mmHg and BtipO2 to <10 mmHg.

Conclusions

A severe increase of ICP leading to CPP below 30 mmHg and BtipO2 below 10 mmHg is associated with an increase of the L/P ratio, thus seems to be critical thresholds for cerebral ischemia under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25:719–38.

    Article  PubMed  Google Scholar 

  2. Maas AI, Marmarou A, Murray GD, Teasdale SG, Steyerberg EW. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J Neurotrauma. 2007;24:232–8.

    Article  PubMed  Google Scholar 

  3. Maas AI, Dearden M, Teasdale GM, et al. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir (Wien). 1997;139:286–94.

    Article  CAS  Google Scholar 

  4. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44.

    PubMed  Google Scholar 

  5. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  6. Meixensberger J, Jaeger M, Vath A, Dings J, Kunze E, Roosen K. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74:760–4.

    Article  PubMed  CAS  Google Scholar 

  7. Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.

    Article  PubMed  CAS  Google Scholar 

  8. Purins K, Sedigh A, Molnar C, et al. Standardized experimental brain death model for studies of intracranial dynamics, organ preservation, and organ transplantation in the pig. Crit Care Med. 2011;39:512–7.

    Article  PubMed  Google Scholar 

  9. Purins K, Enblad P, Sandhagen B, Lewen A. Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors. Acta Neurochir (Wien). 2010;152:681–8.

    Article  Google Scholar 

  10. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9. discussion 9–10.

    PubMed  CAS  Google Scholar 

  11. Zoremba N, Schnoor J, Berens M, Kuhlen R, Rossaint R. Brain metabolism during a decrease in cerebral perfusion pressure caused by an elevated intracranial pressure in the porcine neocortex. Anesth Analg. 2007;105:744–50.

    Article  PubMed  Google Scholar 

  12. Persson L, Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992;76:72–80.

    Article  PubMed  CAS  Google Scholar 

  13. Enblad P, Valtysson J, Andersson J, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996;16:637–44.

    Article  PubMed  CAS  Google Scholar 

  14. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab. 2002;22:735–45.

    Article  PubMed  Google Scholar 

  15. Persson L, Valtysson J, Enblad P, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996;84:606–16.

    Article  PubMed  CAS  Google Scholar 

  16. Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93:808–14.

    Article  PubMed  CAS  Google Scholar 

  17. Stiefel MF, Spiotta A, Gracias VH, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103:805–11.

    Article  PubMed  Google Scholar 

  18. Meixensberger J, Kunze E, Barcsay E, Vaeth A, Roosen K. Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury. Neurol Res. 2001;23:801–6.

    Article  PubMed  CAS  Google Scholar 

  19. Valadka AB, Hlatky R, Furuya Y, Robertson CS. Brain tissue pO2: correlation with cerebral blood flow. Acta Neurochir Suppl. 2002;81:299–301.

    PubMed  CAS  Google Scholar 

  20. Hemphill JC 3rd, Knudson MM, Derugin N, Morabito D, Manley GT. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery. 2001;48:377–83. discussion 83–4.

    PubMed  Google Scholar 

  21. Dings J, Jager A, Meixensberger J, Roosen K. Brain tissue pO2 and outcome after severe head injury. Neurol Res. 1998;20(Suppl 1):S71–5.

    PubMed  Google Scholar 

  22. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS. Relationship of brain tissue pO2 to outcome after severe head injury. Crit Care Med. 1998;26:1576–81.

    Article  PubMed  CAS  Google Scholar 

  23. van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46:868–76. discussion 76–8.

    PubMed  Google Scholar 

  24. Orakcioglu B, Sakowitz OW, Neumann JO, Kentar MM, Unterberg A, Kiening KL. Evaluation of a novel brain tissue oxygenation probe in an experimental swine model. Neurosurgery. 2010;67:1716–22. discussion 22–3.

    Article  PubMed  Google Scholar 

  25. Hoffman WE, Charbel FT, Edelman G. Brain tissue oxygen, carbon dioxide, and pH in neurosurgical patients at risk for ischemia. Anesth Analg. 1996;82:582–6.

    PubMed  CAS  Google Scholar 

  26. Pennings FA, Schuurman PR, van den Munckhof P, Bouma GJ. Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma. 2008;25:1173–7.

    Article  PubMed  Google Scholar 

  27. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien). 1993;59:50–7.

    CAS  Google Scholar 

  28. Manley GT, Pitts LH, Morabito D, et al. Brain tissue oxygenation during hemorrhagic shock, resuscitation, and alterations in ventilation. J Trauma. 1999;46:261–7.

    Article  PubMed  CAS  Google Scholar 

  29. Cavus E, Bein B, Dorges V, et al. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 2006;71:97–106.

    Article  PubMed  CAS  Google Scholar 

  30. Vespa PM, O’Phelan K, McArthur D, et al. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35:1153–60.

    Article  PubMed  Google Scholar 

  31. Clifton GL, Allen S, Barrodale P, et al. A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma. 1993;10:263–71. discussion 73.

    Article  PubMed  CAS  Google Scholar 

  32. Fortune JB, Feustel PJ, Weigle CG, Popp AJ. Continuous measurement of jugular venous oxygen saturation in response to transient elevations of blood pressure in head-injured patients. J Neurosurg. 1994;80:461–8.

    Article  PubMed  CAS  Google Scholar 

  33. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  PubMed  CAS  Google Scholar 

  34. Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. J Trauma. 1990;30:933–40. discussion 40–1.

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen TH, Engell SI, Johnsen RA, et al. Comparison between cerebral tissue oxygen tension and energy metabolism in experimental subdural hematoma. Neurocrit Care. 2011;15(3):585–92.

    Article  PubMed  CAS  Google Scholar 

  36. Baron JC. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis. 2001;11(Suppl 1):2–8.

    Article  PubMed  Google Scholar 

  37. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85:751–7.

    Article  PubMed  CAS  Google Scholar 

  38. Bardt TF, Unterberg AW, Hartl R, Kiening KL, Schneider GH, Lanksch WR. Monitoring of brain tissue pO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. Acta Neurochir Suppl. 1998;71:153–6.

    PubMed  CAS  Google Scholar 

  39. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21:894–906.

    Article  PubMed  Google Scholar 

  40. Doppenberg EM, Zauner A, Watson JC, Bullock R. Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl. 1998;71:166–9.

    PubMed  CAS  Google Scholar 

  41. Nordstrom CH, Reinstrup P, Xu W, Gardenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by The Swedish Research Council. Lars Berglund, Ph.D., Uppsala Clinical Research Center, Uppsala University is acknowledged for statistical analysis. We thank Anders Nordgren, Monica Hall, and Inger Ståhl Myllyaho for their excellent laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlis Purins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purins, K., Enblad, P., Wiklund, L. et al. Brain Tissue Oxygenation and Cerebral Perfusion Pressure Thresholds of Ischemia in a Standardized Pig Brain Death Model. Neurocrit Care 16, 462–469 (2012). https://doi.org/10.1007/s12028-012-9675-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-012-9675-3

Keywords

Navigation