Skip to main content
Log in

Phenylephrine but not Ephedrine Reduces Frontal Lobe Oxygenation Following Anesthesia-Induced Hypotension

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Vasopressor agents are used to correct anesthesia-induced hypotension. We describe the effect of phenylephrine and ephedrine on frontal lobe oxygenation (ScO2) following anesthesia-induced hypotension.

Methods

Following induction of anesthesia by fentanyl (0.15 mg kg−1) and propofol (2.0 mg kg−1), 13 patients received phenylephrine (0.1 mg iv) and 12 patients received ephedrine (10 mg iv) to restore mean arterial pressure (MAP). Heart rate (HR), MAP, stroke volume (SV), cardiac output (CO), and frontal lobe oxygenation (ScO2) were registered.

Results

Induction of anesthesia was followed by a decrease in MAP, HR, SV, and CO concomitant with an elevation in ScO2. After administration of phenylephrine, MAP increased (51 ± 12 to 81 ± 13 mmHg; P < 0.001; mean ± SD). However, a 14% (from 70 ± 8% to 60 ± 7%) reduction in ScO2 (P < 0.05) followed with no change in CO (3.7 ± 1.1 to 3.4 ± 0.9 l min−1). The administration of ephedrine led to a similar increase in MAP (53 ± 9 to 79 ± 8 mmHg; P < 0.001), restored CO (3.2 ± 1.2 to 5.0 ± 1.3 l min−1), and preserved ScO2.

Conclusions

The utilization of phenylephrine to correct hypotension induced by anesthesia has a negative impact on ScO2 while ephedrine maintains frontal lobe oxygenation potentially related to an increase in CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CBF:

Cerebral blood flow

CO:

Cardiac output

HR:

Heart rate

MAP:

Mean arterial pressure

NIRS:

Near infrared spectroscopy

ScO2 :

Frontal lobe cerebral oxygenation

SV:

Stroke volume

References

  1. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    CAS  PubMed  Google Scholar 

  2. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.

    Article  PubMed  Google Scholar 

  3. Nissen P, Pacino H, Frederiksen HJ, Novovic S, Secher NH. Near-infrared spectroscopy for evaluation of cerebral autoregulation during orthotopic liver transplantation. Neurocrit Care. 2009;11:235–41.

    Article  PubMed  Google Scholar 

  4. Kadoi Y, Saito S, Goto F, Fujita N. Decrease in jugular venous oxygen saturation during normothermic cardiopulmonary bypass predicts short-term postoperative neurologic dysfunction in elderly patients. J Am Coll Cardiol. 2001;38:1450–5.

    Article  CAS  PubMed  Google Scholar 

  5. Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8.

    Article  PubMed  Google Scholar 

  6. Rogers AT, Stump DA, Gravlee GP, Prough DS, Angert KC, Wallenhaupt SL, et al. Response of cerebral blood flow to phenylephrine infusion during hypothermic cardiopulmonary bypass: influence of PaCO2 management. Anesthesiology. 1988;69:547–51.

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J, Esler MD. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol 2009; 587:2589–2597

    Google Scholar 

  8. Dinenno FA, Eisenach JH, Dietz NM, Joyner MJ. Post-junctional alpha-adrenoceptors and basal limb vascular tone in healthy men. J Physiol. 2002;540:1103–10.

    Article  CAS  PubMed  Google Scholar 

  9. Brassard P, Seifert T, Secher NH. Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects? Br J Anaesth. 2009;102:800–5.

    Article  CAS  PubMed  Google Scholar 

  10. Pfister D, Strebel SP, Steiner LA. Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury. Eur J Anaesthesiol Suppl. 2008;42:98–103.

    Article  CAS  PubMed  Google Scholar 

  11. Madsen PL, Skak C, Rasmussen A, Secher NH. Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg. 2000;90:489–93.

    Article  CAS  PubMed  Google Scholar 

  12. Jenstrup M, Ejlersen E, Mogensen T, Secher NH. A maximal central venous oxygen saturation (SvO2max) for the surgical patient. Acta Anaesthesiol Scand Suppl. 1995;107:29–32.

    Article  CAS  PubMed  Google Scholar 

  13. Greif R, Akca O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med. 2000;342:161–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol. 1993;74:2566–73.

    CAS  PubMed  Google Scholar 

  15. Harms MP, Wesseling KH, Pott F, Jenstrup M, Van GJ, Secher NH, et al. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci (Lond). 1999;97:291–301.

    Article  CAS  Google Scholar 

  16. Jansen JR, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH. A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth. 2001;87:212–22.

    Article  CAS  PubMed  Google Scholar 

  17. Nissen P, van Lieshout JJ, Novovic S, Bundgaard-Nielsen M, Secher NH. Techniques of cardiac output measurement during liver transplantation: arterial pulse wave versus thermodilution. Liver Transpl. 2009;15:287–91.

    Article  PubMed  Google Scholar 

  18. Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol. 2005;90:437–46.

    Article  PubMed  Google Scholar 

  19. Skak C, Rasmussen A, Kirkegaard P, Secher NH. Cerebral oxygen saturation and blood flow during liver transplantation. Anesth Analg. 1997;84:730–3.

    Article  CAS  PubMed  Google Scholar 

  20. Plachky J, Hofer S, Volkmann M, Martin E, Bardenheuer HJ, Weigand MA. Regional cerebral oxygen saturation is a sensitive marker of cerebral hypoperfusion during orthotopic liver transplantation. Anesth Analg. 2004;99:344–9.

    Article  CAS  PubMed  Google Scholar 

  21. Grubhofer G, Lassnigg A, Manlik F, Marx E, Trubel W, Hiesmayr M. The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy. Anaesthesia. 1997;52:116–20.

    Article  CAS  PubMed  Google Scholar 

  22. Vatner SF, Braunwald E. Cardiovascular control mechanisms in the conscious state. N Engl J Med. 1975;293:970–6.

    Article  CAS  PubMed  Google Scholar 

  23. Nissen P, Nielsen HB, van Lieshout JJ, Secher NH. Frontal lobe oxygenation is maintained during hypotension following propofol-phentanyl anesthesia. AANA J. 2009;77:271–6.

    PubMed  Google Scholar 

  24. Madsen P, Pott F, Olsen SB, Nielsen HB, Burcev I, Secher NH. Near-infrared spectrophotometry determined brain oxygenation during fainting. Acta Physiol Scand. 1998;162:501–7.

    Article  CAS  PubMed  Google Scholar 

  25. Madsen PL, Secher NH. Near-infrared oximetry of the brain. Prog Neurobiol. 1999;58:541–60.

    Article  CAS  PubMed  Google Scholar 

  26. Harms MP, Colier WN, Wieling W, Lenders JW, Secher NH, van Lieshout JJ. Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure. Stroke. 2000;31:1608–14.

    CAS  PubMed  Google Scholar 

  27. Njemanze PC. Critical limits of pressure-flow relation in the human brain. Stroke. 1992;23:1743–7.

    CAS  PubMed  Google Scholar 

  28. Kurihara K, Kikukawa A, Kobayashi A, Nakadate T. Frontal cortical oxygenation changes during gravity-induced loss of consciousness in humans: a near-infrared spatially resolved spectroscopic study. J Appl Physiol. 2007;103:1326–31.

    Article  PubMed  Google Scholar 

  29. Suzuki K, Asahina M, Suzuki A, Hattori T. Cerebral oxygenation monitoring for detecting critical cerebral hypoperfusion in patients with multiple system atrophy during the head-up tilt test. Intern Med. 2008;47:1681–7.

    Article  PubMed  Google Scholar 

  30. Hunt K, Tachtsidis I, Bleasdale-Barr K, Elwell C, Mathias C, Smith M. Changes in cerebral oxygenation and haemodynamics during postural blood pressure changes in patients with autonomic failure. Physiol Meas. 2006;27:777–85.

    Article  PubMed  Google Scholar 

  31. Erkinaro T, Makikallio K, Acharya G, Pakkila M, Kavasmaa T, Huhta JC, et al. Divergent effects of ephedrine and phenylephrine on cardiovascular hemodynamics of near-term fetal sheep exposed to hypoxemia and maternal hypotension. Acta Anaesthesiol Scand. 2007;51:922–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dunaway S, Yu Q, Larson DF. Effect of acute alpha adrenergic stimulation on cardiac function. Perfusion. 2007;22:289–92.

    Article  PubMed  Google Scholar 

  33. Pawelczyk JA, Hanel B, Pawelczyk RA, Warberg J, Secher NH. Leg vasoconstriction during dynamic exercise with reduced cardiac output. J Appl Physiol. 1992;73:1838–46.

    CAS  PubMed  Google Scholar 

  34. Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB. Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol. 2008;586:2807–15.

    Article  CAS  PubMed  Google Scholar 

  35. Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, et al. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol. 2005;569:697–704.

    Article  CAS  PubMed  Google Scholar 

  36. Ide K, Gullov AL, Pott F, van Lieshout JJ, Koefoed BG, Petersen P, et al. Middle cerebral artery blood velocity during exercise in patients with atrial fibrillation. Clin Physiol. 1999;19:284–9.

    Article  CAS  PubMed  Google Scholar 

  37. Secher NH, Seifert T, van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol. 2008;104:306–14.

    Article  CAS  PubMed  Google Scholar 

  38. Lavi S, Egbarya R, Lavi R, Jacob G. Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation. Circulation. 2003;107:1901–5.

    Article  PubMed  Google Scholar 

  39. Schleien CL, Koehler RC, Gervais H, Berkowitz ID, Dean JM, Michael JR, et al. Organ blood flow and somatosensory-evoked potentials during and after cardiopulmonary resuscitation with epinephrine or phenylephrine. Circulation. 1989;79:1332–42.

    CAS  PubMed  Google Scholar 

  40. Schwartz AE, Minanov O, Stone JG, Adams DC, Sandhu AA, Pearson ME, et al. Phenylephrine increases cerebral blood flow during low-flow hypothermic cardiopulmonary bypass in baboons. Anesthesiology. 1996;85:380–4.

    Article  CAS  PubMed  Google Scholar 

  41. Strebel SP, Kindler C, Bissonnette B, Tschaler G, Deanovic D. The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology. 1998;89:67–72.

    Article  CAS  PubMed  Google Scholar 

  42. Ide K, Horn A, Secher NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol. 1999;87:1604–8.

    CAS  PubMed  Google Scholar 

  43. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev. 2004;46:243–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nissen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissen, P., Brassard, P., Jørgensen, T.B. et al. Phenylephrine but not Ephedrine Reduces Frontal Lobe Oxygenation Following Anesthesia-Induced Hypotension. Neurocrit Care 12, 17–23 (2010). https://doi.org/10.1007/s12028-009-9313-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-009-9313-x

Keywords

Navigation