Skip to main content
Log in

Cognitive Event-Related Potentials in Comatose and Post-Comatose States

  • Original Paper
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

We review the interest of cognitive event-related potentials (ERPs) in comatose, vegetative, or minimally conscious patients. Auditory cognitive ERPs are useful to investigate residual cognitive functions, such as echoic memory (MMN), acoustical and semantic discrimination (P300), and incongruent language detection (N400). While early ERPs (such as the absence of cortical responses on somatosensory-evoked potentials) predict bad outcome, cognitive ERPs (MMN and P300) are indicative of recovery of consciousness. In coma-survivors, cognitive potentials are more frequently obtained when using stimuli that are more ecologic or have an emotional content (such as the patient’s own name) than when using classical sine tones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plum F, Posner JB. The diagnosis of stupor and coma. Philadelphia: Davis, F.A; 1983.

    Google Scholar 

  2. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005;9(12):556–9.

    Article  PubMed  Google Scholar 

  3. Rees G, Wojciulik E, Clarke K, Husain M, Frith C, Driver J. Neural correlates of conscious and unconscious vision in parietal extinction. Neurocase 2002;8(5):387–93.

    Article  PubMed  Google Scholar 

  4. Dehaene S, Changeux J. Neural mechanisms for access to consciousness. In: Gazzaniga, M, editor. The cognitive neurosciences III. Cambridge: MIT Press; 2004.

  5. Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol 2004;3(9):537–46.

    Article  PubMed  Google Scholar 

  6. Laureys S, Faymonville ME, Peigneux P, et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 2002;17(2):732–41.

    Article  PubMed  CAS  Google Scholar 

  7. Boly M, Faymonville ME, Peigneux P, et al. Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 2004;61(2):233–8.

    Article  PubMed  Google Scholar 

  8. Laureys S, Faymonville ME, Degueldre C, et al. Auditory processing in the vegetative state. Brain 2000;123(Pt 8):1589–601.

    Article  PubMed  Google Scholar 

  9. Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology 2002;58(3):349–53.

    PubMed  Google Scholar 

  10. Guerit JM, de Tourtchaninoff M, Soveges L, Mahieu P. The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas. Neurophysiol Clin 1993;23(2–3):209–26.

    Article  PubMed  CAS  Google Scholar 

  11. Laureys S, Perrin F, Schnakers C, Boly M, Majerus S. Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 2005;18(6):726–33.

    Article  PubMed  Google Scholar 

  12. Carter BG, Butt W. A prospective study of outcome predictors after severe brain injury in children. Intensive Care Med 2005;31:840–5.

    Article  PubMed  CAS  Google Scholar 

  13. Cant BR, Hume AL, Judson JA, Shaw NA. The assessment of severe head injury by short-latency somatosensory and brain-stem auditory evoked potentials. Electroencephalogr Clin Neurophysiol 1986;65(3):188–95.

    Article  PubMed  CAS  Google Scholar 

  14. Lew HL, Dikmen S, Slimp J, et al. Use of somatosensory-evoked potentials and cognitive event-related potentials in predicting outcomes of patients with severe traumatic brain injury. Am J Phys Med Rehabil 2003;82:53–61.

    Article  PubMed  Google Scholar 

  15. Logi F, Fischer C, Murri L, Mauguiere F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol 2003;114(9):1615–27.

    Article  PubMed  CAS  Google Scholar 

  16. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 2003;31(3):960–7.

    Article  PubMed  Google Scholar 

  17. De Giorgio CM, Rabinowicz AL, Gott PS. Predictive value of P300 event-related potentials compared with EEG and somatosensory evoked potentials in non-traumatic coma. Acta Neurol Scand 1993;87(5):423–7.

    Article  PubMed  Google Scholar 

  18. Amantini A, Grippo A, Fossi S, et al. Prediction of ‘awakening’ and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs. Neurophysiol Clin 2005;116:229–35.

    Article  Google Scholar 

  19. Carter BG, Butt W. Review of the uses of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med 2001;29(1):178–86.

    Article  PubMed  CAS  Google Scholar 

  20. Picton TW, Hillyard SA, Krausz HI, Galambos R. Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 1974;36(2):179–90.

    PubMed  CAS  Google Scholar 

  21. Fischer C, Ibanez V, Jourdan C, Grau A, Mauguiere F, Artru F. Early and middle latency auditory evoked potentials and somatosensory evoked potentials in the vital and functional prognosis of severe brain injuries in intensive care. Agressologie 1988;29(5):359–63.

    PubMed  CAS  Google Scholar 

  22. Garcia-Larrea L, Artru F, Bertrand O, Pernier J, Mauguiere F. The combined monitoring of brain stem auditory evoked potentials and intracranial pressure in coma. A study of 57 patients. J Neurol Neurosurg Psychiatry 1992;55(9):792–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer C, Luaute J, Salord F, Jourdan C, Morlet D. Valeur pronostique des PEA au stade aigu du coma. PE auditifs précoces, de latence moyenne, tardifs et négativité de discordance (MMN). In: Guérit JM, editor. L’évaluation neurophysiologique des comas, de la mort encéphalique et des états végétatifs. Solal ed. Marseille; 2001. p. 169–81.

  24. Litscher G, Schwarz G, Kleinert R. Brain-stem auditory evoked potential monitoring. Variations of stimulus artifact in brain death. Electroencephalogr Clin Neurophysiol 1995;96(5):413–9.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer C, Luaute J, Némoz C, Morlet D, Kirkorian G, Mauguière F. Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Crit Care Med 2006;34:1520–4.

    Article  PubMed  Google Scholar 

  26. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science 1973;182(108):177–80.

    Article  PubMed  CAS  Google Scholar 

  27. Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 1994;92(3):204–14.

    Article  PubMed  CAS  Google Scholar 

  28. Naatanen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987;24(4):375–425.

    Article  PubMed  CAS  Google Scholar 

  29. Scherg M, Von Cramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 1985;62(1):32–44.

    Article  PubMed  CAS  Google Scholar 

  30. Fischer C, Morlet D, Bouchet P, Luaute J, Jourdan C, Salord F. Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 1999;110:1601–10.

    Article  PubMed  CAS  Google Scholar 

  31. Mutschler V, Chaumeil CG, Marcoux L, Wioland N, Tempe JD, Kurtz D. [Auditory P300 in subjects in a post-anoxic coma. Preliminary data]. Neurophysiol Clin 1996;26(3):158–63.

    Article  PubMed  CAS  Google Scholar 

  32. Glass I, Sazbon L, Groswasser Z. Mapping “cognitive” event-related potentials in prolonged postcoma unawareness state. Clin Electroencephalogr 1998;29(1):19–30.

    PubMed  CAS  Google Scholar 

  33. Guerit JM, Verougstraete D, de Tourtchaninoff M, Debatisse D, Witdoeckt C. ERPs obtained with the auditory oddball paradigm in coma and altered states of consciousness: clinical relationships, prognostic value, and origin of components. Clin Neurophysiol 1999;110:1260–9.

    Article  PubMed  CAS  Google Scholar 

  34. Mazzini L, Zaccala M, Gareri F, Giordano A, Angelino E. Long-latency auditory-evoked potentials in severe traumatic brain injury. Arch Phys Med Rehabil 2001;82(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  35. Fischer C, Luaute J, Adeleine P. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology 2004;63:669–73.

    PubMed  Google Scholar 

  36. Kane NM, Curry SH, Rowlands CA, et al. Event-related potentials–neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 1996;22(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  37. Yingling CD, Hosobuchi Y, Harrington M. P300 as a predictor of recovery from coma. Lancet 1990;336(8719):873.

    Article  PubMed  CAS  Google Scholar 

  38. Gott PS, Rabinovicz AL, DiGiorgio CM. P300 auditory event-related potentials in nontraumatic coma: association with Glasgow Coma Score and awakening. Arch Neurol 1991;48:1267–70.

    PubMed  CAS  Google Scholar 

  39. Rappaport M, McCandless K, Pond W, Krafft MC. Passive P300 response in traumatic brain injury patients. J Neuropsychiatry Clin Neurosci 1991;3:180–5.

    PubMed  CAS  Google Scholar 

  40. Signorino M, D’Acunto S, Cercaci S, Pietropaoli P, Angeleri F. The P300 in traumatic coma: conditioning of the odd-ball paradigm. J Psychophysiol 1997;11:59–70.

    Google Scholar 

  41. Naatanen R, Gaillard AW, Mantysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 1978;42(4):313–29.

    Article  CAS  Google Scholar 

  42. Naatanen R, Lehtokoski A, Lennes M, et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 1997;385(6615):432–4.

    Article  PubMed  CAS  Google Scholar 

  43. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 1995;16(1):38–51.

    Article  PubMed  CAS  Google Scholar 

  44. Celsis P, Boulanouar K, Doyon B, et al. Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage 1999;9(1):135–44.

    Article  PubMed  CAS  Google Scholar 

  45. Naatanen R. Attention and brain function. Hillsdale: Erlbaum; 1992.

    Google Scholar 

  46. Kane NM, Curry SH, Butler SR, Cummins BH. Electrophysiological indicator of awakening from coma. Lancet 1993;341:688.

    Article  PubMed  CAS  Google Scholar 

  47. Naccache L, Puybasset L, Gaillard R, Serve E, Willer JC. Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure. Clin Neurophysiol 2005;116(4):988–9.

    Article  PubMed  Google Scholar 

  48. Kotchoubey B, Lang S, Herb E, et al. Stimulus complexity enhances auditory discrimination in patients with extremely severe brain injuries. Neurosci Lett 2003;352(2):129–32.

    Article  PubMed  CAS  Google Scholar 

  49. Kotchoubey B, Lang S, Mezger G, et al. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol 2005;116(10):2441–53.

    Article  PubMed  CAS  Google Scholar 

  50. Wijnen VJ, van Boxtel GJ, Eilander HJ, de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol 2007;118(3):597–605.

    Article  PubMed  CAS  Google Scholar 

  51. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science 1965;150(700):1187–8.

    Article  PubMed  CAS  Google Scholar 

  52. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992;9(4):456–79.

    PubMed  CAS  Google Scholar 

  53. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 1975;38(4):387–401.

    Article  PubMed  CAS  Google Scholar 

  54. Polich J. Frequency, intensity, and duration as determinants of P300 from auditory stimuli. J Clin Neurophysiol 1989;6(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  55. Berlad I, Pratt H. P300 in response to the subject’s own name. Electroencephalogr Clin Neurophysiol 1995;96(5):472–4.

    Article  PubMed  CAS  Google Scholar 

  56. Perrin F, Garcia-Larrea L, Mauguiere F, Bastuji H. A differential brain response to the subject’s own name persists during sleep. Clin Neurophysiol 1999;110(12):2153–64.

    Article  PubMed  CAS  Google Scholar 

  57. Goodin DS, Aminoff MJ. The relationship between the evoked potential and brain events in sensory discrimination and motor response. Brain 1984;107(Pt1):241–51.

    Article  PubMed  Google Scholar 

  58. Verleger R. The true P3 is hard to see: some comments on Kok’s (1986) paper on degraded stimuli. Biol Psychol 1988;27(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  59. Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 1995;94(4):251–64.

    Article  PubMed  CAS  Google Scholar 

  60. Halgren E, Baudena P, Clarke JM, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 1995;94(4):229–50.

    Article  PubMed  CAS  Google Scholar 

  61. Halgren E, Baudena P, Clarke JM, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 1995;94(3):191–220.

    Article  PubMed  CAS  Google Scholar 

  62. Smith ME, Stapleton JM, Halgren E. Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephalogr Clin Neurophysiol 1986;63(2):145–59.

    Article  PubMed  CAS  Google Scholar 

  63. Harris DP, Hall JW, 3rd. Feasibility of auditory event-related potential measurement in brain injury rehabilitation. Ear Hear 1990;11(5):340–50.

    Google Scholar 

  64. Signorino M, D’Acunto S, Angeleri F, Pietropaoli P. Eliciting P300 in comatose patients. Lancet 1995;345(8944):255–6.

    Article  PubMed  CAS  Google Scholar 

  65. Lew HL, Slimp J, Price R, Massagli TL, Robinson LR. Comparison of speech-evoked v tone-evoked P300 response: implications for predicting outcomes in patients with traumatic brain injury. Am J Phys Med Rehabil 1999;78(4):367–71.

    Article  PubMed  CAS  Google Scholar 

  66. Kotchoubey B, Lang S, Bostanov V, Birbaumer N. Is there a mind? Electrophysiology of unconscious patients. News Physiol Sci 2002;17:38–42.

    PubMed  Google Scholar 

  67. Kotchoubey B, Lang S. Event-related potentials in an auditory semantic oddball task in humans. Neurosci Lett 2001;310(2–3):93–6.

    Article  PubMed  CAS  Google Scholar 

  68. Marosi M, Prevec T, Masala C, et al. Event-related potentials in vegetative state. Lancet 1993;341(8858):1473.

    Article  PubMed  CAS  Google Scholar 

  69. Giorgianni R, Lo Presti R, D’Aleo G, Mondo N, Di Bella P, Bramanti P. Event-related potentials in patients in persistent vegetative state. EEG J 1997;103(1):149.

    Google Scholar 

  70. Prevec T, Saltuari L, Masala C. Mental functions in apallic patients after traumatic cerebral lesions. Electroencephalogr Clin Neurophysiol 1993;87:S130.

    Google Scholar 

  71. Perrin F, Schnakers C, Schabus M, et al. Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 2006;63(4):562–9.

    Article  PubMed  Google Scholar 

  72. Kutas M, Hillyard SA. Reading senseless sentences: brain potentials reflect semantic incongruity. Science 1980;207(4427):203–5.

    Article  PubMed  CAS  Google Scholar 

  73. Connolly JF, Stewart SH, Phillips NA. The effects of processing requirements on neurophysiological responses to spoken sentences. Brain Lang 1990;39(2):302–18.

    Article  PubMed  CAS  Google Scholar 

  74. Kutas M, Hillyard SA. An electrophysiological probe of incidental semantic association. J Cogn Neurosci 1989;1:38–49.

    Article  Google Scholar 

  75. Perrin F, Garcia-Larrea L. Modulation of the N400 potential during auditory phonological/semantic interaction. Brain Res Cogn Brain Res 2003;17(1):36–47.

    Article  PubMed  Google Scholar 

  76. Hagoort P, Brown CM, Swaab TY. Lexical-semantic event-related potential effects in patients with left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia. Brain 1996;119(Pt 2):627–49.

    Article  PubMed  Google Scholar 

  77. McCarthy G, Nobre AC, Bentin S, Spencer DD. Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J Neurosci 1995;15(2):1080–9.

    PubMed  CAS  Google Scholar 

  78. Schoenle PW, Witzke W. How vegetative is the vegetative state? Preserved semantic processing in vegetative state patients: evidence from N400 event related potentials. Neurorehabilitation 2004;19:329–34.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Perrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanhaudenhuyse, A., Laureys, S. & Perrin, F. Cognitive Event-Related Potentials in Comatose and Post-Comatose States. Neurocrit Care 8, 262–270 (2008). https://doi.org/10.1007/s12028-007-9016-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-007-9016-0

Keywords

Navigation