Skip to main content

Advertisement

Log in

Integrated analyses delineate distinctive immunological pathways and diagnostic signatures for Behcet’s disease by leveraging gene microarray data

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Behcet’s disease (BD) is a chronic inflammatory vasculitis and clinically heterogeneous disorder caused by immunocyte aberrations. Comprehensive research on gene expression patterns in BD illuminating its aetiology is lacking. E-MTAB-2713 downloaded from ArrayExpress was analysed to screen differentially expressed genes (DEGs) using limma. Random forest (RF) and neural network (NN) classification models composed of gene signatures were established using the E-MTAB-2713 training set and subsequently verified using GSE17114. Single sample gene set enrichment analysis was used to assess immunocyte infiltration. After identifying DEGs in E-MTAB-2713, pathogen-triggered, lymphocyte-mediated and angiogenesis- and glycosylation-related inflammatory pathways were discovered to be predominant in BD episodes. Gene signatures from the RF and NN diagnostic models, together with genes enriched in angiogenesis and glycosylation pathways, well discriminated the clinical subtypes of BD manifesting as mucocutaneous, ocular and large vein thrombosis involvement in GSE17114. Moreover, a distinctive immunocyte profile revealed T, NK and dendritic cell activation in BD compared to the findings in healthy controls. Our findings suggested that EPHX1, PKP2, EIF4B and HORMAD1 expression in CD14+ monocytes and CSTF3 and TCEANC2 expression in CD16+ neutrophils could serve as combined gene signatures for BD phenotype differentiation. Pathway genes comprising ATP2B4, MYOF and NRP1 for angiogenesis and GXYLT1, ENG, CD69, GAA, SIGLEC7, SIGLEC9 and SIGLEC16 for glycosylation also might be applicable diagnostic markers for subtype identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The dataset presented in this study can be found in ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) and Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) (GSE61399 and GSE17114).

Abbreviations

AAV :

ANCA-associated vasculitis

APC :

Antigen presenting cells

AUC :

Area under the curve

BD :

Behcet’s disease

BP :

Biological process

CCR :

Chemokine receptor

CMV :

Cytomegalovirus

C3 :

Complement 3

DEG :

Differentially expressed gene

FDR :

False discovery rate

GEO :

Gene Expression Omnibus

GO :

Gene Ontology

GWAS :

Genome-wide association study

HC :

Healthy control

HSV :

Herpes simplex virus

HLA :

Human leukocyte antigen

IBD :

Inflammatory bowel disease

iDC :

Immature dendritic cells

IFN :

Interferon

IL :

Interleukin

KEGG :

Kyoto Encyclopedia of Genes and Genomes

MB :

BD patients with mucocutaneous manifestations

MG :

Module genes

NK :

Natural killer cell

NN :

Neural network

OB :

BD patients with ocular involvement

PCR :

Polymerase chain reaction

pDC :

Plasmacytoid dendritic cell

PG :

Paramount genes

PPI :

Protein–protein Interaction

pSS :

Primary Sjögren’s syndrome

RA :

Rheumatoid arthritis

RF :

Random forest

ROC :

Receiver operating characteristic

SLE :

Systemic lupus erythematosus

ssGSEA :

Single sample gene set enrichment analysis

Tfh :

Follicular helper T cell

TNF :

Tumor necrosis-like factors

Th :

Helper T cell

Treg :

Regulatory T cell

VB :

BD patients with large vein thrombosis

WGCNA :

Weighted correlation network analysis

References

  1. Yazici Y, Hatemi G, Bodaghi B, et al. Behçet syndrome. Nat Rev Dis Primers. 2021;7:67. https://doi.org/10.1038/s41572-021-00301-1.

    Article  PubMed  Google Scholar 

  2. Davatchi F, Chams-Davatchi C, Shams H, et al. Behcet's disease: epidemiology, clinical manifestations, and diagnosis. Expert Rev Clin Immunol. 2017;13:57–65. https://doi.org/10.1080/1744666x.2016.1205486.

    Article  CAS  PubMed  Google Scholar 

  3. Emmi G, Bettiol A, Silvestri E, et al. Vascular Behçet's syndrome: an update. Intern Emerg Med. 2019;14:645–52. https://doi.org/10.1007/s11739-018-1991-y.

    Article  PubMed  Google Scholar 

  4. Zhong Z, Su G, Zhou Q, et al. Tuberculosis Exposure With Risk of Behçet Disease Among Patients With Uveitis. JAMA Ophthalmol. 2021;139:415–22. https://doi.org/10.1001/jamaophthalmol.2020.6985.

    Article  PubMed  Google Scholar 

  5. Hatemi G, Yazici H. Behçet's syndrome and micro-organisms. Best Pract Res Clin Rheumatol. 2011;25:389–406. https://doi.org/10.1016/j.berh.2011.05.002.

    Article  PubMed  Google Scholar 

  6. Greco A, De Virgilio A, Ralli M, et al. Behçet's disease: New insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17:567–75. https://doi.org/10.1016/j.autrev.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  7. Su G, Zhong Z, Zhou Q, et al. Identification of Novel Risk Loci for Behçet's Disease-Related Uveitis in a Chinese Population in a Genome-Wide Association Study. Arthritis Rheumatol. 2022;74:671–81. https://doi.org/10.1002/art.41998.

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi M, Ombrello MJ, Kirino Y, et al. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behçet's disease in HLA-B*51 carriers. Ann Rheum Dis. 2016;75:2208–11. https://doi.org/10.1136/annrheumdis-2015-209059.

    Article  CAS  PubMed  Google Scholar 

  9. Gül A. Genetics of Behçet's disease: lessons learned from genomewide association studies. Curr Opin Rheumatol. 2014;26:56–63. https://doi.org/10.1097/bor.0000000000000003.

    Article  PubMed  Google Scholar 

  10. Afkari B, Babaloo Z, Dolati S, et al. Molecular analysis of interleukin-10 gene polymorphisms in patients with Behçet's disease. Immunol Lett. 2018;194:56–61. https://doi.org/10.1016/j.imlet.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  11. Hou S, Yang Z, Du L, et al. Identification of a susceptibility locus in STAT4 for Behçet's disease in Han Chinese in a genome-wide association study. Arthritis Rheum. 2012;64:4104–13. https://doi.org/10.1002/art.37708.

    Article  CAS  PubMed  Google Scholar 

  12. Xavier JM, Shahram F, Sousa I, et al. FUT2: filling the gap between genes and environment in Behçet's disease? Ann Rheum Dis. 2015;74:618–24. https://doi.org/10.1136/annrheumdis-2013-204475.

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–7. https://doi.org/10.1093/bioinformatics/btq431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93. https://doi.org/10.1093/bioinformatics/19.2.185.

    Article  CAS  PubMed  Google Scholar 

  15. Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics. 2009;25:415–6. https://doi.org/10.1093/bioinformatics/btn647.

    Article  CAS  PubMed  Google Scholar 

  16. Oğuz AK, Yılmaz ST, Oygür Ç, et al. Behçet's: A Disease or a Syndrome? Answer from an Expression Profiling Study. PLoS One. 2016;11:e0149052. https://doi.org/10.1371/journal.pone.0149052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xavier JM, Krug T, Davatchi F, et al. Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behçet's disease susceptibility. J Mol Med (Berl). 2013;91:1013–23. https://doi.org/10.1007/s00109-013-1022-4.

    Article  CAS  PubMed  Google Scholar 

  18. Diboun I, Wernisch L, Orengo CA, et al. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 2006;7:252. https://doi.org/10.1186/1471-2164-7-252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qing X, Xu W, Liu S, et al. Molecular Characteristics, Clinical Significance, and Cancer Immune Interactions of Angiogenesis-Associated Genes in Gastric Cancer. Front Immunol. 2022;13:843077. https://doi.org/10.3389/fimmu.2022.843077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohamed Abd-El-Halim Y, El Kaoutari A, Silvy F, et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71:103541. https://doi.org/10.1016/j.ebiom.2021.103541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. https://doi.org/10.1093/nar/gku1003.

    Article  CAS  PubMed  Google Scholar 

  24. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3. https://doi.org/10.1186/1471-2105-7-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Günther F, Fritsch S. neuralnet: Training of Neural Networks. R J. 2010;2(1):30–38. https://doi.org/10.32614/RJ-2010-006.

  27. She J, Su D, Diao R, et al. A Joint Model of Random Forest and Artificial Neural Network for the Diagnosis of Endometriosis. Front Genet. 2022;13:848116. https://doi.org/10.3389/fgene.2022.848116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12. https://doi.org/10.1038/nature08460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017;18:248–62. https://doi.org/10.1016/j.celrep.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  31. Walker SE, Zhou F, Mitchell SF, et al. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. Rna. 2013;19:191–207. https://doi.org/10.1261/rna.035881.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen B, Chen Y, Rai KR, et al. Deficiency of eIF4B Increases Mouse Mortality and Impairs Antiviral Immunity. Front Immunol. 2021;12:723885. https://doi.org/10.3389/fimmu.2021.723885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hua L, Yao S, Pham D, et al. Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol. 2013;87:11884–93. https://doi.org/10.1128/jvi.01461-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu K, Wang Y, Zhu Q, et al. Aberrantly expressed HORMAD1 disrupts nuclear localization of MCM8-MCM9 complex and compromises DNA mismatch repair in cancer cells. Cell Death Dis. 2020;11:519. https://doi.org/10.1038/s41419-020-2736-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eghbalpour F, Aghaei M, Ebrahimi M, et al. Effect of indole-3-carbinol on transcriptional profiling of wound-healing genes in macrophages of systemic lupus erythematosus patients: an RNA sequencing assay. Lupus. 2020;29:954–63. https://doi.org/10.1177/0961203320929746.

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Qi Y, Wang G, et al. Proteomic profiling of saliva reveals association of complement system with primary Sjögren's syndrome. Immun Inflamm Dis. 2021;9:1724–39. https://doi.org/10.1002/iid3.529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao Y, Mi X, Wang Z, et al. Bioinformatic analysis reveals that the OAS family may play an important role in lupus nephritis. J Natl Med Assoc. 2020;112:567–77. https://doi.org/10.1016/j.jnma.2020.05.006.

    Article  PubMed  Google Scholar 

  38. He P, Zhang Z, Liao W, et al. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol Med Rep. 2016;14:1587–93. https://doi.org/10.3892/mmr.2016.5423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Imgenberg-Kreuz J, Sandling JK, Almlöf JC, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren's syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 2016;75:2029–36. https://doi.org/10.1136/annrheumdis-2015-208659.

    Article  CAS  PubMed  Google Scholar 

  40. Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun. 2016;74:161–75. https://doi.org/10.1016/j.jaut.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  41. Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D, et al. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2018;77:736–43. https://doi.org/10.1136/annrheumdis-2017-212379.

    Article  CAS  PubMed  Google Scholar 

  42. Haque M, Singh AK, Ouseph MM, et al. Regulation of Synovial Inflammation and Tissue Destruction by Guanylate Binding Protein 5 in Synovial Fibroblasts From Patients With Rheumatoid Arthritis and Rats With Adjuvant-Induced Arthritis. Arthritis Rheumatol. 2021;73:943–54. https://doi.org/10.1002/art.41611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine. 2021;146:155633. https://doi.org/10.1016/j.cyto.2021.155633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Juczynska K, Wozniacka A, Waszczykowska E, et al. Expression of JAK3, STAT2, STAT4, and STAT6 in pemphigus vulgaris. Immunol Res. 2020;68:97–103. https://doi.org/10.1007/s12026-020-09122-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang X, Xiang Z, Sun Z, et al. Host MOV10 is induced to restrict herpes simplex virus 1 lytic infection by promoting type I interferon response. PLoS Pathog. 2022;18:e1010301. https://doi.org/10.1371/journal.ppat.1010301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Nashmi M, Taha S, Alsharoqi I, et al. Interleukin 1 receptor antagonist and 2'-5'-oligoadenylate synthetase-like molecules as novel biomarkers for multiple sclerosis patients in Bahrain. Mult Scler Relat Disord. 2017;18:1–7. https://doi.org/10.1016/j.msard.2017.09.001.

    Article  PubMed  Google Scholar 

  47. Beecham GW, Dickson DW, Scott WK, et al. PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology. 2015;84:972–80. https://doi.org/10.1212/wnl.0000000000001332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. González-Amaro R, Cortés JR, Sánchez-Madrid F, et al. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19:625–32. https://doi.org/10.1016/j.molmed.2013.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamzaoui K, Bouali E, Ghorbel I, et al. Expression of Th-17 and RORγt mRNA in Behçet's Disease. Med Sci Monit. 2011;17:Cr227–34. https://doi.org/10.12659/msm.881720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim J, Park JA, Lee EY, et al. Imbalance of Th17 to Th1 cells in Behçet's disease. Clin Exp Rheumatol. 2010;28:S16–9.

    PubMed  Google Scholar 

  51. Geri G, Terrier B, Rosenzwajg M, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behçet disease. J Allergy Clin Immunol. 2011;128:655–64. https://doi.org/10.1016/j.jaci.2011.05.029.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmadi M, Yousefi M, Abbaspour-Aghdam S, et al. Disturbed Th17/Treg balance, cytokines, and miRNAs in peripheral blood of patients with Behcet's disease. J Cell Physiol. 2019;234:3985–94. https://doi.org/10.1002/jcp.27207.

    Article  CAS  PubMed  Google Scholar 

  53. Choi JY, Ho JH, Pasoto SG, et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 2015;67:988–99. https://doi.org/10.1002/art.39020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cosan F, Aktas Cetin E, Akdeniz N, et al. Natural Killer Cell Subsets and Their Functional Activity in Behçet's Disease. Immunol Invest. 2017;46:419–32. https://doi.org/10.1080/08820139.2017.1288240.

    Article  CAS  PubMed  Google Scholar 

  55. Bonacini M, Soriano A, Zerbini A, et al. Higher Frequencies of Lymphocytes Expressing the Natural Killer Group 2D Receptor in Patients With Behçet Disease. Front Immunol. 2018;9:2157. https://doi.org/10.3389/fimmu.2018.02157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50:37–50. https://doi.org/10.1016/j.immuni.2018.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yilmaz S, Cinar M, Pekel A, et al. The expression of transmembrane and soluble CXCL16 and the relation with interferon-alpha secretion in patients with Behçet's disease. Clin Exp Rheumatol. 2013;31:84–7.

    PubMed  Google Scholar 

  58. Sari I, Birlik M, Gonen C, et al. Cytomegalovirus colitis in a patient with Behcet's disease receiving tumor necrosis factor alpha inhibitory treatment. World J Gastroenterol. 2008;14:2912–4. https://doi.org/10.3748/wjg.14.2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60. https://doi.org/10.1038/nm0603-653.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express special gratitude to the researchers of the datasets of E-MTAB-2713, GSE17114 and GSE61399.

Funding

This research was supported by grants from the National Key Research and Development Program of China (2018YFE0207300), Beijing Municipal Natural Science Foundation Project (7234383) and the National Natural Science Foundation of China Grants (81871302).

Author information

Authors and Affiliations

Authors

Contributions

Professor YZL conceived and designed the research. PhD. HTZ extracted the data, performed the software analysis and visualized the graphs and tables. PhD. LLC and HLL supervised the statistical analyses. PhD. HTZ, YML, HLL, YH, XML and SXY categorised the graphs and tables. PhD. HTZ wrote the paper. All authors are accountable for all aspects of the study and attest to the accuracy and integrity of the results. The authors have read and approved the final manuscript as submitted.

Corresponding author

Correspondence to Yongzhe Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3.01 mb)

ESM 2

(XLSX 81 kb)

ESM 3

(JPG 2803 kb)

ESM 4

(JPG 19966 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Cheng, L., Li, H. et al. Integrated analyses delineate distinctive immunological pathways and diagnostic signatures for Behcet’s disease by leveraging gene microarray data. Immunol Res 71, 860–872 (2023). https://doi.org/10.1007/s12026-023-09398-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09398-w

Keywords

Navigation