Skip to main content

Advertisement

Log in

RGC-32 and diseases: the first 20 years

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The response gene to complement (RGC)-32 acts as a cell cycle regulator and mediator of TGF-β effects. However, recent studies have revealed other functions for RGC-32 in diverse processes such as cellular migration, differentiation, and fibrosis. In addition to its induction by complement activation and the C5b-9 terminal complement complex, RGC-32 expression is also stimulated by growth factors, hormones, and cytokines. RGC-32 is induced by TGF-β through Smad3 and RhoA signaling and plays an important role in cell differentiation. In particular, RGC-32 is essential for the differentiation of Th17 cells. RGC-32−/− mice display an attenuated experimental autoimmune encephalomyelitis phenotype that is accompanied by decreased central nervous system inflammation and reductions in IL-17- and GM-CSF-producing CD4+ T cells. Accumulating evidence has drawn attention to the deregulated expression of RGC-32 in human cancers, atherogenesis, metabolic disorders, and autoimmune disease. Furthermore, RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases. A better understanding of the mechanism(s) by which RGC-32 contributes to the pathogenesis of all these diseases will provide new insights into its therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

α-SMA:

alpha smooth muscle actin

AEC:

aortic endothelial cells

BATF:

Basic leucine zipper transcription factor

CDC2:

cell division cycle protein 2 homolog

EBV:

Epstein–Barr virus

EAE:

experimental autoimmune encephalomyelitis

ECM:

extracellular matrix

EMT:

epithelial to mesenchymal transition

HFD:

high-fat diet

ICAM-1:

intercellular adhesion molecules 1

IRF4:

interferon regulatory factor 4

KO:

knockout

MAPK:

mitogen-associated protein kinase

MMP:

matrix metalloproteinases

MS:

multiple sclerosis

PI3K:

phosphatidylinositol-3-kinase

PIGF:

placental growth factor

RGC-32:

response gene to complement 32

ROCK:

rho-associated coiled-coil-containing protein kinase

SLE:

systemic lupus erythematosus

SMC:

smooth muscle cells

VCAM-1:

vascular cell adhesion molecule 1

VEGF:

vascular endothelial growth factor

WT:

wild type

References

  1. Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.

    Article  CAS  PubMed  Google Scholar 

  2. Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.

    Article  CAS  PubMed  Google Scholar 

  3. Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, et al. Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005;78:116–22.

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, et al. Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem. 2007;282:10133–7.

    Article  CAS  PubMed  Google Scholar 

  5. Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, Rus V, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp. 2008;56:115–22.

    Article  CAS  Google Scholar 

  6. Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.

    Article  CAS  PubMed  Google Scholar 

  7. Rus HG, Niculescu F, Shin ML. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol. 1996;156:4892–900.

    CAS  PubMed  Google Scholar 

  8. Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S, et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, et al. Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood. 2004;103:3365–73.

    Article  CAS  PubMed  Google Scholar 

  10. Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, et al. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 2010;88:67–76.

    Article  CAS  PubMed  Google Scholar 

  11. Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, et al. RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 2007;26:1110–21.

    Article  CAS  PubMed  Google Scholar 

  12. Schlick SN, Wood CD, Gunnell A, Webb HM, Khasnis S, Schepers A, et al. Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One. 2011;6:e28638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, et al. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett. 2016;21:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, Boodhoo D, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Counts SE, Mufson EJ. Regulator of cell cycle (RGCC) expression during the progression of Alzheimer’s disease. Cell Transplant. 2017;26:693–702.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY. Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-beta-induced smooth muscle cell differentiation of neural crest cells. Am J Phys. 2011;301:C499–506.

    Article  CAS  Google Scholar 

  17. Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R 3rd, Khan A, et al. Dual role of response gene to complement-32 in multiple sclerosis. Exp Mol Pathol. 2013;94:17–28.

    Article  CAS  PubMed  Google Scholar 

  18. Tang R, Zhang G, Chen SY. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway. J Biol Chem. 2014;289:22715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao P, Gao D, Wang Q, Song B, Shao Q, Sun J, et al. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol. 2015;12:692–9.

    Article  CAS  PubMed  Google Scholar 

  20. Santoni M, Cascinu S, Mills CD. Altering macrophage polarization in the tumor environment: the role of response gene to complement 32. Cell Mol Immunol. 2015;12:783–4.

    Article  CAS  PubMed  Google Scholar 

  21. Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, et al. RGC-32 promotes Th17 cell differentiation and enhances experimental autoimmune encephalomyelitis. J Immunol. 2017;198:3869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vlaicu SI, Tatomir A, Boodhoo D, Ito T, Fosbrink M, Cudrici C, et al. RGC-32 is expressed in the human atherosclerotic arterial wall: role in C5b-9-induced cell proliferation and migration. Exp Mol Pathol. 2016;101:221–30.

    Article  CAS  PubMed  Google Scholar 

  23. Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, et al. RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:e36–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang JN, Shi N, Xie WB, Guo X, Chen SY. Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol. 2011;31:e19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vlaicu S, Tatomir A, Boodhoo D, Tegla C, Rus V, Rus H. RGC-32 mediates extracellular matrix production in human atherosclerotic lesions [abstract]. Atherosclerosis. 2018;275:e125.

    Article  Google Scholar 

  26. Tang JM, Shi N, Dong K, Brown SA, Coleman AE, Boegehold MA, et al. Response gene to complement 32 maintains blood pressure homeostasis by regulating alpha-adrenergic receptor expression. Circ Res. 2018;123:1080–90.

    Article  CAS  PubMed  Google Scholar 

  27. Cui XB, Guo X, Chen SY. Response gene to complement 32 deficiency causes impaired placental angiogenesis in mice. Cardiovasc Res. 2013;99:632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang QJ, Song BF, Zhang YH, Ma YY, Shao QQ, Liu J, et al. Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta. 2015;36:350–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sones JL, Merriam AA, Seffens A, Brown-Grant DA, Butler SD, Zhao AM, et al. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J. 2018;32:2574–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li B, Zhou W, Tang X, Wang W, Pan J, Tan M. Response gene to complement-32 promotes the imbalance of Treg/Th17 in patients with dilated cardiomyopathy. Cell Physiol Biochem. 2017;43:1515–25.

    Article  CAS  PubMed  Google Scholar 

  31. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11:1278–89.

    Article  CAS  PubMed  Google Scholar 

  32. Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol. 2015;224:127–37.

    Article  CAS  PubMed  Google Scholar 

  33. Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med. 2014;7:2541–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Mei X, Yin A, Yin H, Cui XB, Chen SY. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting beta3-adrenergic receptor/mTORC1 signaling. FASEB J. 2018;32:4836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5:1544–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui XB, Luan JN, Chen SY. RGC-32 deficiency protects against hepatic steatosis by reducing lipogenesis. J Biol Chem. 2015;290:20387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rubio A, Guruceaga E, Vazquez-Chantada M, Sandoval J, Martinez-Cruz LA, Segura V, et al. Identification of a gene-pathway associated with non-alcoholic steatohepatitis. J Hepatol. 2007;46:708–18.

    Article  CAS  PubMed  Google Scholar 

  38. Watanabe A, Marumo T, Kawarazaki W, Nishimoto M, Ayuzawa N, Ueda K, et al. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am J Physiol Renal Physiol. 2018;314:F551–F60.

    Article  CAS  PubMed  Google Scholar 

  39. Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, et al. Loss of response gene to complement 32 (RGC-32) in diabetic mouse retina is involved in retinopathy development. Int J Mol Sci. 2018;19:E3629.

    Article  CAS  PubMed  Google Scholar 

  40. Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm. 2015;2015:764641.

    Article  CAS  Google Scholar 

  41. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo X, Jose PA, Chen SY. Response gene to complement 32 interacts with Smad3 to promote epithelial-mesenchymal transition of human renal tubular cells. Am J Phys. 2011;300:C1415–21.

    Article  CAS  Google Scholar 

  43. Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009;284:9426–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Z, Xie WB, Escano CS, Asico LD, Xie Q, Jose PA, et al. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem. 2011;286:41323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu XL, Kuang XY, Zhang ZG, Liu XG, Zhao ZH, Zhang X, et al. Expression of response gene to complement-32 in renal tissue of children with immunoglobulin A nephropathy. Scand J Urol Nephrol. 2011;45:371–6.

    Article  CAS  PubMed  Google Scholar 

  46. Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail. 2016;38:276–81.

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Shen Y, Sun L, Kuang X, Zhang R, Zhang H, et al. Effects of response gene to complement 32 as a new biomarker in children with acute kidney injury. Zhonghua Er Ke Za Zhi. 2014;52:494–9.

    PubMed  Google Scholar 

  48. Wang XY, Li SN, Zhu HF, Hu ZY, Zhong Y, Gu CS, et al. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep. 2017;7:46078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho H, Lim BJ, Kang ES, Choi JS, Kim JH. Molecular characterization of a new ovarian cancer cell line, YDOV-151, established from mucinous cystadenocarcinoma. Tohoku J Exp Med. 2009;218:129–39.

    Article  CAS  PubMed  Google Scholar 

  50. Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene. 2004;23:8065–77.

    Article  CAS  PubMed  Google Scholar 

  51. Eskandari-Nasab E, Hashemi M, Rafighdoost F. Promoter methylation and mRNA expression of response gene to complement 32 in breast carcinoma. J Cancer Epidemiol. 2016:7680523.

  52. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    Article  CAS  PubMed  Google Scholar 

  53. Hahn A. Differentielle Genexpression der gene APR-1, B56, RGC32 und SIAT-8A bei kutanen T-Zell-Lymphomen [Dissertation]. Heidelberg: Ruprecht-Karls-Universität Heidelberg Fakultät für Klinische Medizin Mannheim; 2006.

  54. Schlick S. Investigating the role of RGC-32 in cell cycle disruption by EBV EBNA 3C [Dissertation]. Sussex: School of Life Sciences, University of Sussex; 2010.

  55. Rasiah K. The identification of novel biomarkers in the development and progression of early prostate Cancer [Dissertation]. New South Wales: University of New South Wales; 2006.

  56. Demeure MJ, Coan KE, Grant CS, Komorowski RA, Stephan E, Sinari S, et al. PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery. 2013;154:1405–16.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, et al. Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006;24:274–87.

    Article  CAS  PubMed  Google Scholar 

  59. Hu YJ, Zhou Q, Li ZY, Feng D, Sun L, Shen YL, et al. Renal proteomic analysis of RGC-32 knockout mice reveals the potential mechanism of RGC-32 in regulating cell cycle. Am J Transl Res. 2018;10:847–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, et al. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012;31:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu R, Shang C, Zhao J, Han Y, Liu J, Chen K, et al. Knockdown of response gene to complement 32 (RGC32) induces apoptosis and inhibits cell growth, migration, and invasion in human lung cancer cells. Mol Cell Biochem. 2014;394:109–18.

    Article  CAS  PubMed  Google Scholar 

  63. Brocard M, Khasnis S, Wood CD, Shannon-Lowe C, West MJ. Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32. Nucleic Acids Res. 2018;46:3707–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu Y, Hu XB. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol Rep. 2014;32:2817–23.

    Article  CAS  PubMed  Google Scholar 

  65. Kovacevic Z, Fu D, Richardson DR. The iron-regulated metastasis suppressor, Ndrg-1: identification of novel molecular targets. Biochim Biophys Acta. 2008;1783:1981–92.

    Article  CAS  PubMed  Google Scholar 

  66. Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, et al. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol. 2011;5:438–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 2015;150:33–46.

    Article  CAS  PubMed  Google Scholar 

  68. Tian J, Xu C, Yang MH, Li ZG. Overexpression of response gene to complement-32 promotes cytoskeleton reorganization in SW480 cell line. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1179–82.

    CAS  PubMed  Google Scholar 

  69. Sun Q, Yao X, Ning Y, Zhang W, Zhou G, Dong Y. Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-kappaB signaling pathway. Tumour Biol. 2013;34:2995–3002.

    Article  CAS  PubMed  Google Scholar 

  70. Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15:81–95.

    Article  CAS  PubMed  Google Scholar 

  71. Massague J. TGF beta in cancer. Cell. 2008;134:215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanaka T, Takada H, Nomura A, Ohga S, Shibata R, Hara T. Distinct gene expression patterns of peripheral blood cells in hyper-IgE syndrome. Clin Exp Immunol. 2005;140:524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kruszewski AM, Rao G, Tatomir A, Hewes D, Tegla CA, Cudrici CD, et al. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol. 2015;99:498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lopatinskaya L, van Boxel-Dezaire AH, Barkhof F, Polman CH, Lucas CJ, Nagelkerken L. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood. J Neuroimmunol. 2003;138:123–31.

    Article  CAS  PubMed  Google Scholar 

  75. Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R 3rd, et al. SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol. 2014;96:139–48.

    Article  CAS  PubMed  Google Scholar 

  76. Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23–9.

    Article  CAS  PubMed  Google Scholar 

  77. Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta. 2016;1862:483–91.

    Article  CAS  PubMed  Google Scholar 

  78. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tatomir A, Tegla CA, Martin A, Boodhoo D, Nguyen V, Sugarman AJ, et al. RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunol Res. 2018;66:445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rus V, Tatomir A, Nguyen V, Rus H. Response gene to complement-32 expression is upregulated in lupus T cells and promotes IL-17A expression [abstract]. J Immunol. 2018;200(Suppl 1):45.11.

    Google Scholar 

  81. Talpos-Caia A, Nguyen V, Tatomir A, Sung SS, Papadimitriou J, Atamas S, et al. Response gene to complement-32 promotes kidney damage in immune complex –mediated glomerulonephritis [abstract]. Arthritis Rheumatol. 2018;70(Suppl 10).

  82. Sun C, Chen SY. RGC32 promotes bleomycin-induced systemic sclerosis in a murine disease model by modulating classically activated macrophage function. J Immunol. 2018;200:2777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Atamas S, Rus V, Lockatell V, Rus H, Luzina I. Antifibrotic regulation by response gene to complement 32 protein [abstract]. Arthritis Rheumatol. 2018;70(suppl 10).

  84. Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches. Int J Med Sci. 2018;15:1129–42.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kim HJ, Jang J, Lee EH, Jung S, Roh JY, Jung Y. Decreased expression of response gene to complement 32 in psoriasis and its association with reduced M2 macrophage polarization. J Dermatol. 2019;46:166–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Deborah McClellan for editing this manuscript.

Funding

This work was supported in part by Veterans Administration Merit Award I01BX001458 (to H.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horea Rus.

Ethics declarations

Conflict of interest

Horea Rus has received a grant from TEVA Neuroscience (CNS-2014-174). All other authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlaicu, S.I., Tatomir, A., Anselmo, F. et al. RGC-32 and diseases: the first 20 years. Immunol Res 67, 267–279 (2019). https://doi.org/10.1007/s12026-019-09080-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09080-0

Keywords

Navigation