Skip to main content
Log in

The class D scavenger receptor CD68 contributes to mouse chronic liver injury

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Scavenger receptors, which are expressed on monocyte/macrophages, play a central role in many pathogenic processes. Here, we examined the role of the class D scavenger receptor (CD68) in bone marrow-derived monocyte/macrophages (BMMs) in chronic liver injury. The expression pattern of multiple scavenger receptors in two liver injury models (methionine-choline-deficient and high fat (MCDHF), carbon tetrachloride (CCl4)) were analyzed by qRT-PCR. CD68 expression was characterized by flow cytometric analysis, immunofluorescence, and qRT-PCR. A selective monocyte/macrophage toxicant, gadolinium chloride (GdCl3) was applied to analyze the function of CD68 in vitro and in vivo. Among the seven examined scavenger receptors (CD68, CD36, CD204, MARCO, LOX1, SREC, and CD163), the mRNA expression of CD68 first got uppermost and continuously increased throughout the entire stage of chronic liver injury, thus attracting our attention. In the injured liver, the percentage of recruited CD68+ BMM increased notably, aligning along the developing fibrotic septa, while the proportion of CD68+ KC stayed the same compared with that of control mice. In vitro CD68 was highly expressed in primary cultured BMM, and CD68 reduction was triggered by macrophage phagocytosis and apoptosis in the presence of GdCl3. In the damaged liver, the recruitment of CD68+ BMM and CD68 mRNA expression were reduced by GdCl3 administration, leading to the attenuation of liver inflammation and fibrosis. Altogether, scavenger receptor CD68 plays a key role in mouse chronic liver injury, which has important implications for the design of anti-fibrotic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017;95:1153–65.

    Article  CAS  Google Scholar 

  2. Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cell. 2015;4:178–201.

    Article  CAS  Google Scholar 

  3. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Investig. 2017;97:4–13.

    Article  PubMed  CAS  Google Scholar 

  4. Bentley JK, Sajjan US, Dzaman MB, Jarjour NN, Lee WM, Gern JE, et al. Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. J Allergy Clin Immunol. 2013;132:758–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, et al. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183:1080–91.

    Article  PubMed  Google Scholar 

  6. Han Z, Zhu T, Liu X, Li C, Yue S, Liu X, et al. 15-deoxy-Delta12,14 -prostaglandin J2 reduces recruitment of bone marrow-derived monocyte/macrophages in chronic liver injury in mice. Hepatology. 2012;56:350–60.

    Article  PubMed  CAS  Google Scholar 

  7. Mai P, Yang L, Tian L, Wang L, Jia S, Zhang Y, et al. Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow-derived monocytes/macrophages in a CB1-dependent manner. J Immunol. 2015;195:3390–401.

    Article  PubMed  CAS  Google Scholar 

  8. Stefater JR, Ren S, Lang RA, Duffield JS. Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med. 2011;17:743–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, Gonzalez DLAA, Nicolas-Avila JA, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 2017;214:1281–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93:875–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  PubMed  CAS  Google Scholar 

  13. Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59:2034–42.

    Article  PubMed  Google Scholar 

  14. Ramachandran P, Iredale JP. Macrophages: central regulators of hepatic fibrogenesis and fibrosis resolution. J Hepatol. 2012;56:1417–9.

    Article  PubMed  Google Scholar 

  15. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61:416–26.

    Article  PubMed  CAS  Google Scholar 

  17. Li C, Zheng S, You H, Liu X, Lin M, Yang L, et al. Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol. 2011;54:1205–13.

    Article  PubMed  CAS  Google Scholar 

  18. Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y, et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol. 2013;59:114–23.

    Article  PubMed  CAS  Google Scholar 

  19. Li C, Jiang X, Yang L, Liu X, Yue S, Li L. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. Am J Pathol. 2009;175:1464–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang DM, Bao YL, Yu CL, Wang YM, Song ZB. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-kappaB signaling. Immunol Res. 2016;64:104–14.

    Article  PubMed  CAS  Google Scholar 

  21. Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H, Shono S, et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol. 2010;53:903–10.

    Article  PubMed  CAS  Google Scholar 

  22. Liu C, Yang Z, Wang L, Lu Y, Tang B, Miao H, et al. Combination of sorafenib and gadolinium chloride (GdCl3) attenuates dimethylnitrosamine(DMN)-induced liver fibrosis in rats. BMC Gastroenterol. 2015;15:159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ryabov V, Gombozhapova A, Rogovskaya Y, Kzhyshkowska J, Rebenkova M, Karpov R. Cardiac CD68+ and stabilin-1+ macrophages in wound healing following myocardial infarction: from experiment to clinic. Immunobiology. 2017

  24. Da SR, Gordon S. Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. Biochem J. 1999;338(Pt 3):687–94.

    Google Scholar 

  25. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1996;93:14833–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li AC, Guidez FR, Collier JG, Glass CK. The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun. J Biol Chem. 1998;273:5389–99.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshida H, Quehenberger O, Kondratenko N, Green S, Steinberg D. Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol. 1998;18:794–802.

    Article  PubMed  CAS  Google Scholar 

  29. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13:1118–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10:453–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sun LX, Lin ZB, Lu J, Li WD, Niu YD, Sun Y, et al. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol Res. 2017;65:658–65.

    Article  PubMed  CAS  Google Scholar 

  32. Xu Q, Liu X, Wang X, Hua Y, Wang X, Chen J, et al. Growth arrest-specific protein 7 regulates the murine M1 alveolar macrophage polarization. Immunol Res. 2017;65:1065–73.

    Article  PubMed  CAS  Google Scholar 

  33. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Waltl I, Kaufer C, Broer S, Chhatbar C, Ghita L, Gerhauser I, et al. Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol Dis. 2018;110:192–205.

    Article  PubMed  CAS  Google Scholar 

  35. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  PubMed  CAS  Google Scholar 

  36. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–95.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang-Hoover J, Sutton A, van Rooijen N, Stein-Streilein J. A critical role for alveolar macrophages in elicitation of pulmonary immune fibrosis. Immunology. 2000;101:501–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural and Science Foundation of China (81430013, 81670550, 81500465), Beijing Natural Science Foundation (7172019), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20150502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Li.

Ethics declarations

All animal work was conformed to the Ethics Committee of Capital Medical University and in accordance with the approved guidelines (approval number: AEEI-2014-131).

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, L., Dong, C. et al. The class D scavenger receptor CD68 contributes to mouse chronic liver injury. Immunol Res 66, 414–424 (2018). https://doi.org/10.1007/s12026-018-9002-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-9002-y

Keywords

Navigation