Skip to main content

Advertisement

Log in

Dendritic cell-based immunotherapy: a basic review and recent advances

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are considered a very promising arm to activate the immune system in immunotherapeutic strategies against cancer. DCs are the most powerful antigen-presenting cells (APCs), being highly efficient at generating robust immune responses. They are also considered the center of the immune system, since they provide a crucial link between both innate and adaptive immune responses. Thus, DC-based cancer immunotherapy aims to take advantage of these unique characteristics of DCs to better fight cancer. During the last decade, they have been the subject of numerous studies intending to develop immunotherapeutic strategies against cancer through vaccination. For this purpose, it is essential to gain a better insight into DC immunobiology, regulation of innate and adaptive immune systems, and tumor microenvironment, as well as applying the latest advances in science in order to boost their enormous anti-tumor immunotherapeutic potential. In this review, we will hold focus on DC immunobiology (from their origin, location, and special properties and distinct subsets to the innate and adaptive immunity), on the new concept of cancer immunoediting, and on the knowledge given by clinical trials using DC vaccines. Finally, future perspectives for this emerging field are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  3. Van Brussel I, Berneman ZN, Cools N. Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediat Inflamm. 2012;2012:1–14.

    Article  Google Scholar 

  4. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.

    Article  CAS  PubMed  Google Scholar 

  5. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625:41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boudreau JE, Bonehill A, Thielemans K, Wan Y. Engineering dendritic cells to enhance cancer immunotherapy. Mol Ther. 2011;19:841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.

    Article  CAS  PubMed  Google Scholar 

  8. Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19:41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27:5932–43.

    Article  CAS  PubMed  Google Scholar 

  10. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–46.

    Article  CAS  PubMed  Google Scholar 

  11. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  12. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 2006;6:715–27.

    Article  CAS  PubMed  Google Scholar 

  13. Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res. 2016;168:74–95.

    Article  CAS  PubMed  Google Scholar 

  14. Sabado RL, Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy. 2010;2:37–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amedei A, Benagiano M, Della Bella C, Niccolai E, D’Elios MM. Novel immunotherapeutic strategies of gastric cancer treatment. J Biomed Biotechnol. 2011;2011

  16. Nicolette CA, et al. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine. 2007;25

  17. Obermaier B, et al. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol Proced Online. 2003;5:197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banchereau J, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–8.

    CAS  PubMed  Google Scholar 

  19. Klechevsky E, et al. Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum Immunol. 2009;70:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pulendran B, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol. 2000;165:566–72.

    Article  CAS  PubMed  Google Scholar 

  21. O’Neill D, Bhardwaj N. Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy. Methods Mol Med. 2005;109:97–112.

    PubMed  Google Scholar 

  22. Schnurr M, et al. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood. 2005;105:2465–72.

    Article  CAS  PubMed  Google Scholar 

  23. Schroers R, et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther. 2000;1:171–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dyall J, Latouche JB, Schnell S, Sadelain M. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood. 2001;97:114–21.

  25. Lizée G, Gonzales MI, Topalian SL. Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther. 2004;15:393–404.

    Article  PubMed  Google Scholar 

  26. Yang L, et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol. 2008;26:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nair SK, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg. 2002;235

  28. Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. 2004;199:251–63.

    Article  CAS  PubMed  Google Scholar 

  29. Heiser A, et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res. 2001;61:3388–93.

    CAS  PubMed  Google Scholar 

  30. Shortman K, Lahoud MH, Caminschi I. Improving vaccines by targeting antigens to dendritic cells. Exp Mol Med. 2009;41:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tacken PJ, Torensma R, Figdor CG. Targeting antigens to dendritic cells in vivo. Immunobiology. 2006;211:599–608.

    Article  CAS  PubMed  Google Scholar 

  32. Ueno H, et al. Targeting human dendritic cell subsets for improved vaccines. Semin Immunol. 2011;23:21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caminschi I, Maraskovsky E, Heath WR. Targeting dendritic cells in vivo for cancer therapy. Front Immunol. 2012;3

  34. Galluzzi L, et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2012;1:1111–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Butterfield L, Dendritic H. Cells in cancer immunotherapy clinical trials: are we making progress? Front Immunol. 2013;4:454.

    Article  PubMed  PubMed Central  Google Scholar 

  36. López MN, et al. Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol. 2009;27

  37. Hsu FJ, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–8.

    Article  CAS  PubMed  Google Scholar 

  38. Benteyn D, et al. Characterization of CD 8 + T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL). Biomed Res Int. 2013;2013

  39. Rosenblatt J, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117:393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morse MA, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dhodapkar, M. V et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 6, 232ra51 (2014).

  42. Yi HD, Appel S. Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scand J Immunol. (2013);78:167–71.

  43. Bonaccorsi I, Pezzino G, Morandi B, Ferlazzo G. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett. 2013;155:6–10.

    Article  CAS  PubMed  Google Scholar 

  44. Robbins PF, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsushita H, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Helfer BM, et al. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy. 2010;12:238–50.

    Article  CAS  PubMed  Google Scholar 

  47. Mohan T, Verma P, Nageswara Rao D. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138:779–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams S, et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol. 2008;181

  49. Wang C, Lin GHY, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev. 2009;229:192–215.

    Article  CAS  PubMed  Google Scholar 

  50. May KF, Chen L, Zheng P, Liu Y. Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res. 2002;62:3459–65.

    CAS  PubMed  Google Scholar 

  51. Murillo O, et al. In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur J Immunol. 2009;39:2424–36.

    Article  CAS  PubMed  Google Scholar 

  52. Elgueta R, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229:152–72.

    Article  CAS  PubMed  Google Scholar 

  53. Hanks BA, et al. Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat Med. 2005;11:130–7.

    Article  CAS  PubMed  Google Scholar 

  54. Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed Nanotechnol Biol Med. (2010);6:523–9.

  55. Boscardin SB, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med. 2006;203:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou F, Li X, Naylor MF, Hode T, Nordquist RE, Alleruzzo L, Raker J, Lam SS, Du N, Shi L, Wang X, C. W. InCVAX-A novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett 359(2), 169–177 (2015).

  57. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  58. Chen WR, Zhu WG, Dynlacht JR, Liu H, Nordquist RE. Long-term tumor resistance induced by laser photo-immunotherapy. Int J Cancer. 1999;81:808–12.

    Article  CAS  PubMed  Google Scholar 

  59. Li X, et al. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochem Photobiol Sci. 2011;10:817–21.

    Article  CAS  PubMed  Google Scholar 

  60. Graziela Romagnoli, Bruna Zelante, Patrícia Toniolo, I. M. and & Barbuto, J. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front Immunol 5, (2015).

  61. Hasumi K, Aoki Y, Watanabe R, Hankey KG, Mann DL. Therapeutic response in patients with advanced malignancies treated with combined dendritic cell–activated T cell based immunotherapy and intensity–modulated radiotherapy. Cancers (Basel). 2011;3:2223–42.

    Article  CAS  Google Scholar 

  62. Pfannenstiel LW, Lam SSK, Emens LA, Jaffee EM, Armstrong TD. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol. 2010;263:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Radojcic V, et al. Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother. 2010;59:137–48.

    Article  CAS  PubMed  Google Scholar 

  64. Hobo W, et al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother. 2013;62:285–97.

    Article  CAS  PubMed  Google Scholar 

  65. Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY. SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest. 2006;116:90–100.

    Article  CAS  PubMed  Google Scholar 

  66. Cohen N, et al. GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood. 2006;107:2037–44.

    Article  CAS  PubMed  Google Scholar 

  67. Berrebi D, et al. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood. 2003;101:729–38.

    Article  CAS  PubMed  Google Scholar 

  68. Vicari AP, et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med. 2002;196:541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fujita T, et al. Inhibition of transforming growth factor-β-mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res. 2009;69:5142–50.

    Article  CAS  PubMed  Google Scholar 

  70. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Houot R, Schultz LM, Marabelle A, Kohrt H. T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res. 2015;3:1115–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by HealthyAging2020 (ref. CENTRO-01-0145-FEDER-000012) and co-funded by Fundo Europeu de Desenvolvimento Regional (FEDER), through the Programa Operacional Regional do Centro (CENTRO2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantino, J., Gomes, C., Falcão, A. et al. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res 65, 798–810 (2017). https://doi.org/10.1007/s12026-017-8931-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8931-1

Keywords

Navigation