Skip to main content

Advertisement

Log in

Production of porcine TNFα by ADAM17-mediated cleavage negatively regulates porcine reproductive and respiratory syndrome virus infection

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a series of inflammatory reactions in sites of infection, companied by the upregulation of key inflammatory factor TNFα. TNFα, which serves as a “master regulator” of inflammatory cytokine production, is mainly produced by macrophages at the early infection stage. Here, we showed that porcine alveolar macrophages produced a great amount of soluble TNFα upon PRRSV infection. Furthermore, we found that TNFα had great anti-PRRSV effect. Next, by using inhibitor and genetic modification methods, we addressed that porcine TNFα production was mediated by ADAM17. Lastly, we proved that the 78Arg–Ser–Ser motif of porcine TNFα contained the essential information for efficient cleavage. Taken together, our findings provide the direct evidence that ADAM17 cleaves porcine TNFα, which represents a new view for identifying potential therapeutic targets in anti-PRRSV therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest. 1992;4(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  2. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997;142(3):629–33.

    CAS  PubMed  Google Scholar 

  3. Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993;192(1):62–72. doi:10.1006/viro.1993.1008.

    Article  CAS  PubMed  Google Scholar 

  4. Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol. 1999;73(1):270–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou L, Chen S, Zhang J, Zeng J, Guo X, Ge X, Zhang D, Yang H. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Res. 2009;145(1):97–105. doi:10.1016/j.virusres.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  6. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE. 2007;2(6):e526. doi:10.1371/journal.pone.0000526.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Wang X, Bo K, Wang X, Tang B, Yang B, Jiang W, Jiang P. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet J. 2007;174(3):577–84. doi:10.1016/j.tvjl.2007.07.032.

    Article  CAS  PubMed  Google Scholar 

  8. Duan X, Nauwynck HJ, Pensaert MB. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol. 1997;142(12):2483–97.

    Article  CAS  PubMed  Google Scholar 

  9. Thanawongnuwech R, Thacker B, Halbur P, Thacker EL. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Clin Diagn Lab Immunol. 2004;11(5):901–8. doi:10.1128/cdli.11.5.901-908.2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo B, Lager KM, Henningson JN, Miller LC, Schlink SN, Kappes MA, Kehrli ME Jr, Brockmeier SL, Nicholson TL, Yang HC, Faaberg KS. Experimental infection of United States swine with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus. Virology. 2013;435(2):372–84. doi:10.1016/j.virol.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  11. Choi C, Chae C. Expression of tumour necrosis factor-alpha is associated with apoptosis in lungs of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Res Vet Sci. 2002;72(1):45–9. doi:10.1053/rvsc.2001.0519.

    Article  CAS  PubMed  Google Scholar 

  12. Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986;320(6063):584–8. doi:10.1038/320584a0.

    Article  CAS  PubMed  Google Scholar 

  13. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745–56. doi:10.1038/nri1184.

    Article  CAS  PubMed  Google Scholar 

  14. Cirino NM, Panuska JR, Villani A, Taraf H, Rebert NA, Merolla R, Tsivitse P, Gilbert IA. Restricted replication of respiratory syncytial virus in human alveolar macrophages. J Gen Virol. 1993;74(Pt 8):1527–37.

    Article  CAS  PubMed  Google Scholar 

  15. Kollias G, Douni E, Kassiotis G, Kontoyiannis D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis. 1999;58(Suppl 1):I32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane BR, Markovitz DM, Woodford NL, Rochford R, Strieter RM, Coffey MJ. TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C–C chemokine receptor 5 (CCR5) expression. J Immunol. 1999;163(7):3653–61.

    CAS  PubMed  Google Scholar 

  17. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72(9):3666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117(2):244–79. doi:10.1016/j.pharmthera.2007.10.001.

    Article  CAS  PubMed  Google Scholar 

  19. Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724–9.

    Article  CAS  PubMed  Google Scholar 

  20. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729–33. doi:10.1038/385729a0.

    Article  CAS  PubMed  Google Scholar 

  21. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Asp Med. 2008;29(5):258–89.

    Article  CAS  Google Scholar 

  22. Wang Y, Liang Y, Han J, Burkhart KM, Vaughn EM, Roof MB, Faaberg KS. Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence. Virology. 2008;371(2):418–29. doi:10.1016/j.virol.2007.09.032.

    Article  CAS  PubMed  Google Scholar 

  23. Barlaam B, Bird TG, Lambert-Van Der Brempt C, Campbell D, Foster SJ, Maciewicz R. New alpha-substituted succinate-based hydroxamic acids as TNFalpha convertase inhibitors. J Med Chem. 1999;42(23):4890–908.

    Article  CAS  PubMed  Google Scholar 

  24. Moore CB, Guthrie EH, Huang MT, Taxman DJ. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol. 2010;629:141–58. doi:10.1007/978-1-60761-657-3_10.

    PubMed  PubMed Central  Google Scholar 

  25. Guo L, Niu J, Yu H, Gu W, Li R, Luo X, Huang M, Tian Z, Feng L, Wang Y. Modulation of CD163 expression by metalloprotease ADAM17 regulates porcine reproductive and respiratory syndrome virus entry. J Virol. 2014;88(18):10448–58. doi:10.1128/jvi.01117-14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu W, Guo L, Yu H, Niu J, Huang M, Luo X, Li R, Tian Z, Feng L, Wang Y. Involvement of CD16 in antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection. J Gen Virol. 2015;. doi:10.1099/vir.0.000118.

    Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  28. Moore CT, Lonsdorf EV, Knutson MG, Laskowski HP, Lor SK. Adaptive management in the U.S. National Wildlife Refuge System: science–management partnerships for conservation delivery. J Environ Manag. 2011;92(5):1395–402. doi:10.1016/j.jenvman.2010.10.065.

    Article  Google Scholar 

  29. Maini RN, Elliott MJ, Brennan FM, Feldmann M. Beneficial effects of tumour necrosis factor-alpha (TNF-alpha) blockade in rheumatoid arthritis (RA). Clin Exp Immunol. 1995;101(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119(3):651–65. doi:10.1182/blood-2011-04-325225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi C, Cho WS, Kim B, Chae C. Expression of interferon-gamma and tumour necrosis factor-alpha in pigs experimentally infected with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). J Comp Pathol. 2002;127(2–3):106–13.

    Article  CAS  PubMed  Google Scholar 

  32. Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Moller A, Jacobsen H, Kirchner H. Antiviral effects of recombinant tumour necrosis factor in vitro. Nature. 1986;323(6091):816–9. doi:10.1038/323816a0.

    Article  CAS  PubMed  Google Scholar 

  33. Rio C, Buxbaum JD, Peschon JJ, Corfas G. Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem. 2000;275(14):10379–87.

    Article  CAS  PubMed  Google Scholar 

  34. Kumakura S, Ishikura H, Maniwa Y, Munemasa S, Tsumura H, Masuda J, Kobayashi S. Activation of protein kinase C enhances TNF-alpha-induced differentiation by preventing apoptosis via rapid up-regulation of c-Myc protein expression in HL-60 cells. Leuk Lymphoma. 2003;44(3):497–503. doi:10.1080/1042819021000047010.

    Article  CAS  PubMed  Google Scholar 

  35. Poli G, Kinter A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci USA. 1990;87(2):782–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997;385(6618):733–6. doi:10.1038/385733a0.

    Article  CAS  PubMed  Google Scholar 

  37. Gomez-Laguna J, Salguero FJ, Pallares FJ, Fernandez de Marco M, Barranco I, Ceron JJ, Martinez-Subiela S, Van Reeth K, Carrasco L. Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comp Immunol Microbiol Infect Dis. 2010;33(6):e51–8. doi:10.1016/j.cimid.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  38. von Rosen T, Lohse L, Nielsen J, Uttenthal A. Classical swine fever virus infection modulates serum levels of INF-alpha, IL-8 and TNF-alpha in 6-month-old pigs. Res Vet Sci. 2013;95(3):1262–7. doi:10.1016/j.rvsc.2013.09.011.

    Article  Google Scholar 

  39. Kim B, Ahn KK, Ha Y, Lee YH, Kim D, Lim JH, Kim SH, Kim MY, Cho KD, Lee BH, Chae C. Association of tumor necrosis factor-alpha with fever and pulmonary lesion score in pigs experimentally infected with swine influenza virus subtype H1N2. J Vet Med Sci. 2009;71(5):611–6.

    Article  CAS  PubMed  Google Scholar 

  40. Gao W, Sun W, Qu B, Cardona CJ, Powell K, Wegner M, Shi Y, Xing Z. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1) 2009 influenza virus. PLoS ONE. 2012;7(1):e30328. doi:10.1371/journal.pone.0030328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gimeno M, Darwich L, Diaz I, de la Torre E, Pujols J, Martin M, Inumaru S, Cano E, Domingo M, Montoya M, Mateu E. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates. Vet Res. 2011;42:9. doi:10.1186/1297-9716-42-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez-Fuertes L, Campos E, Domenech N, Ezquerra A, Castro JM, Dominguez J, Alonso F. Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-alpha production in infected macrophages. Virus Res. 2000;69(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  43. Van Reeth K, Labarque G, Nauwynck H, Pensaert M. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Res Vet Sci. 1999;67(1):47–52. doi:10.1053/rvsc.1998.0277.

    Article  PubMed  Google Scholar 

  44. Le J, Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest. 1987;56(3):234–48.

    CAS  PubMed  Google Scholar 

  45. Lehmann C, Sprenger H, Nain M, Bacher M, Gemsa D. Infection of macrophages by influenza A virus: characteristics of tumour necrosis factor-alpha (TNF alpha) gene expression. Res Virol. 1996;147(2–3):123–30.

    Article  CAS  PubMed  Google Scholar 

  46. Seo SH, Webster RG. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol. 2002;76(3):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li S, Wang J, He WR, Feng S, Li Y, Wang X, Liao Y, Qin HY, Li LF, Dong H, Sun Y, Luo Y, Qiu HJ. Thioredoxin 2 is a novel E2-interacting protein that inhibits the replication of classical swine fever virus. J Virol. 2015;. doi:10.1128/jvi.00429-15.

    Google Scholar 

  48. Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 2011;32(8):380–7. doi:10.1016/j.it.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  49. Etzerodt A, Rasmussen MR, Svendsen P, Chalaris A, Schwarz J, Galea I, Moller HJ, Moestrup SK. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-alpha in macrophages. J Biol Chem. 2014;289(2):778–88. doi:10.1074/jbc.M113.520213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (31372416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Guo, L., Gu, W. et al. Production of porcine TNFα by ADAM17-mediated cleavage negatively regulates porcine reproductive and respiratory syndrome virus infection. Immunol Res 64, 711–720 (2016). https://doi.org/10.1007/s12026-015-8772-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8772-8

Keywords

Navigation