Skip to main content
Log in

Ikaros, Helios, and Aiolos protein levels increase in human thymocytes after β selection

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In human T cell development, the mechanisms that regulate cell fate decisions after TCRβ expression remain unclear. We defined the stages of T cell development that flank TCRβ expression and found distinct patterns of human T cell development. In half the subjects, T cell development progressed from the CD4CD8 double-negative stage to the CD4+CD8+ double-positive (DP) stage through an immature single-positive (ISP) CD4+ intermediate. However, in some patients, CD4 and CD8 were expressed simultaneously and the ISP population was small. In each group of patients, CD3 ISP and DP thymocytes were subdivided into ISP1, ISP2, DP1, DP2, DP3, DP4, and DP5 developmental stages according to their expression of CD28, CD44, CD1a, CD7, CD45RO, and CD38. The ISP2, DP2, and DP3 thymocyte populations proliferated more robustly than ISP1 and DP1 and expressed markers consistent with TCRβ expression. After the DP3 stage, proliferation returned to baseline levels. We then analyzed protein levels of Ikaros, Helios, and Aiolos, the three Ikaros family members most abundantly expressed in human thymocytes. Ikaros and Helios expression increased transiently at the ISP2, DP2, and DP3 populations. Aiolos expression also increased at the ISP2, DP2, and DP3 stages, but its expression remained elevated throughout the DP4 and DP5 stages. In summary, we propose a model of human T cell development that reflects the asynchronous nature of TCRβ expression and we define the subpopulations of thymocytes that are highly proliferative and express Ikaros family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dik WA, Pike-Overzet K, Weerkamp F, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201:1715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taghon T, Van de Walle I, De Smet G, De Smedt M, Leclercq G, Vandekerckhove B, Plum J. Notch signaling is required for proliferation but not for differentiation at a well-defined beta-selection checkpoint during human T-cell development. Blood. 2009;113:3254–63.

    Article  CAS  PubMed  Google Scholar 

  3. Carrasco YR, Trigueros C, Ramiro AR, de Yebenes VG, Toribio ML. Beta-selection is associated with the onset of CD8 beta chain expression on CD4(+)CD8 alpha alpha(+) pre-T cells during human intrathymic development. Blood. 1999;94:3491–8.

    CAS  PubMed  Google Scholar 

  4. Blom B, Verschuren MC, Heemskerk MH, et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood. 1999;93:3033–43.

    CAS  PubMed  Google Scholar 

  5. Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF. Human alpha beta and gamma delta thymocyte development: tCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential–differences between men and mice. J Immunol. 2006;176:1543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Michie AM, Zuniga-Pflucker JC. Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol. 2002;14:311–23.

    Article  CAS  PubMed  Google Scholar 

  7. Aifantis I, Gounari F, Scorrano L, Borowski C, von Boehmer H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol. 2001;2:403–9.

    CAS  PubMed  Google Scholar 

  8. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature. 1995;375:795–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hahm K, Cobb BS, McCarty AS, et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998;12:782–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, Morgan BA. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol. 1998;8:508–15.

    Article  CAS  PubMed  Google Scholar 

  11. Morgan B, Sun L, Avitahl N, et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 1997;16:2004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem. 2000;275:38347–54.

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 1996;15:5358–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cortes M, Wong E, Koipally J, Georgopoulos K. Control of lymphocyte development by the Ikaros gene family. Curr Opin Immunol. 1999;11:167–71.

    Article  CAS  PubMed  Google Scholar 

  15. Ma S, Pathak S, Trinh L, Lu R. Interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B-cell receptor and promote cell-cycle withdrawal in pre-B-cell development. Blood. 2008;111:1396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson EC, Cobb BS, Sabbattini P, et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell JL, Seng A, Yankee TM. Expression and splicing of Ikaros family members in murine and human thymocytes. Mol Immunol. 2015 (in revision).

  18. Xiong J, Parker BL, Dalheimer SL, Yankee TM. Interleukin-7 supports survival of T-cell receptor-beta-expressing CD4(−) CD8(−) double-negative thymocytes. Immunology. 2013;138:382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng L, Dalheimer SL, Yankee TM. Gads−/− mice reveal functionally distinct subsets of TCRbeta+ CD4−CD8− double-negative thymocytes. J Immunol. 2007;179:1013–21.

    Article  CAS  PubMed  Google Scholar 

  20. Fujii Y, Okumura M, Inada K, Nakahara K, Matsuda H. CD45 isoform expression during T cell development in the thymus. Eur J Immunol. 1992;22:1843–50.

    Article  CAS  PubMed  Google Scholar 

  21. von Boehmer H, Aifantis I, Feinberg J, et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol. 1999;11:135–42.

    Article  Google Scholar 

  22. Varas A, Jimenez E, Sacedon R, Rodriguez-Mahou M, Maroto E, Zapata AG, Vicente A. Analysis of the human neonatal thymus: evidence for a transient thymic involution. J Immunol. 2000;164:6260–7.

    Article  CAS  PubMed  Google Scholar 

  23. Weerkamp F, de Haas EF, Naber BA, Comans-Bitter WM, Bogers AJ, van Dongen JJ, Staal FJ. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol. 2005;115:834–40.

    Article  PubMed  Google Scholar 

  24. Murphy M, Epstein LB. Down syndrome (trisomy 21) thymuses have a decreased proportion of cells expressing high levels of TCR alpha, beta and CD3. A possible mechanism for diminished T cell function in Down syndrome. Clin Immunol Immunopathol. 1990;55:453–67.

    Article  CAS  PubMed  Google Scholar 

  25. Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, Kioussis D. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. J Immunol. 2011;186:6368–77.

    Article  CAS  PubMed  Google Scholar 

  26. Ramiro AR, Trigueros C, Marquez C, San Millan JL, Toribio ML. Regulation of pre-T cell receptor (pT alpha-TCR beta) gene expression during human thymic development. J Exp Med. 1996;184:519–30.

    Article  CAS  PubMed  Google Scholar 

  27. Penit C, Lucas B, Vasseur F. Cell expansion and growth arrest phases during the transition from precursor (CD4−8−) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J Immunol. 1995;154:5103–13.

    CAS  PubMed  Google Scholar 

  28. Webb LM, Vigorito E, Wymann MP, Hirsch E, Turner M. Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol. 2005;175:2783–7.

    Article  CAS  PubMed  Google Scholar 

  29. Saborit-Villarroya I, Vaisitti T, Rossi D, D’Arena G, Gaidano G, Malavasi F, Deaglio S. E2A is a transcriptional regulator of CD38 expression in chronic lymphocytic leukemia. Leukemia. 2011;25:479–88.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu LY, Lauring J, Liang HE, Greenbaum S, Cado D, Zhuang Y, Schlissel MS. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity. 2003;19:105–17.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Xiao Y, Zhang J, et al. Transcription factors E2A, FOXO1 and FOXP1 regulate recombination activating gene expression in cancer cells. PLoS One. 2011;6:e20475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dovat S, Montecino-Rodriguez E, Schuman V, Teitell MA, Dorshkind K, Smale ST. Transgenic expression of Helios in B lineage cells alters B cell properties and promotes lymphomagenesis. J Immunol. 2005;175:3508–15.

    Article  CAS  PubMed  Google Scholar 

  33. Winandy S, Wu L, Wang JH, Georgopoulos K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med. 1999;190:1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandal M, Powers SE, Ochiai K, Georgopoulos K, Kee BL, Singh H, Clark MR. Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat Immunol. 2009;10:1110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreirós Vidal I, Carroll T, Taylor B, et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood. 2013;121(10):1769–82.

    Article  PubMed  Google Scholar 

  36. Collins B, Clambey ET, Scott-Browne J, White J, Marrack P, Hagman J, Kappler JW. Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line. Eur J Immunol. 2013;43:521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kathrein KL, Lorenz R, Innes AM, Griffiths E, Winandy S. Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Mol Cell Biol. 2005;25:1645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Yankee.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, J.L., Seng, A. & Yankee, T.M. Ikaros, Helios, and Aiolos protein levels increase in human thymocytes after β selection. Immunol Res 64, 565–575 (2016). https://doi.org/10.1007/s12026-015-8754-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8754-x

Keywords

Navigation