Skip to main content

Advertisement

Log in

Novel DOCK8 gene mutations lead to absence of protein expression in patients with hyper-IgE syndrome

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Autosomal recessive hyper-immunoglobulin E syndrome (AR-HIES) caused by DOCK8 defects is characterized by recurrent elevated serum IgE level, elevated peripheral eosinophil count, severe atopy, recurrent viral and bacterial infections, and early-onset malignancy. The clinical, genetic, and immunologic characteristics of DOCK8 mutations in Chinese patients have not been characterized in detail. In this research, we screened seven Chinese candidate patients for mutations within the DOCK8 gene and identified three large novel homozygous deletions and four novel point mutations by targeted deep sequencing. The homozygous deletions displayed autosomal recessive inheritance, and the point mutations were sporadic. Absence of DOCK8 protein was confirmed using flow cytometry and western blotting. Besides the typical clinical features and immunologic impairments of DIDS, proliferation of lymphocytes, cytotoxic function of NK cells, and expression of IL-10 in regulatory B cells were severely impaired in DOCK8 mutant patients which may be associated with abnormal immune responses in DIDS. These findings will contribute to the early diagnosis and treatment of DOCK8 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grimbacher B, Holland SM, Puck JM. Hyper-IgE syndromes. Immunol Rev. 2005;203:244–50. doi:10.1111/j.0105-2896.2005.00228.x.

    Article  CAS  PubMed  Google Scholar 

  2. Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972;49(1):59–70.

    CAS  PubMed  Google Scholar 

  3. Miyamoto Y, Yamauchi J. Cellular signaling of Dock family proteins in neural function. Cell Signal. 2010;22(2):175–82. doi:10.1016/j.cellsig.2009.09.036.

    Article  CAS  PubMed  Google Scholar 

  4. Ruusala A, Aspenstrom P. Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett. 2004;572(1–3):159–66. doi:10.1016/j.febslet.2004.06.095.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. New Eng J Med. 2009;361(21):2046–55. doi:10.1056/NEJMoa0905506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Alsum Z, Hawwari A, Alsmadi O, Al-Hissi S, Borrero E, Abu-Staiteh A, et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-like deficient patients: single center experience of twenty-five patients. J Clin Immunol. 2013;33(1):55–67. doi:10.1007/s10875-012-9769-x.

    Article  CAS  PubMed  Google Scholar 

  7. Sanal O, Jing H, Ozgur T, Ayvaz D, Strauss-Albee DM, Ersoy-Evans S, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32(4):698–708. doi:10.1007/s10875-012-9664-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allerg Clin Immunol. 2009;124(6):1289–302. doi:10.1016/j.jaci.2009.10.038.

    Article  CAS  Google Scholar 

  9. Engelhardt KR, Gertz ME, Keles S, Schaffer AA, Sigmund EC, Glocker C, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allerg Clin Immunol. 2015;. doi:10.1016/j.jaci.2014.12.1945.

    Google Scholar 

  10. Zimmerman RS, Cox S, Lakdawala NK, Cirino A, Mancini-DiNardo D, Clark E, et al. A novel custom resequencing array for dilated cardiomyopathy. Genet Med Off J Am Coll Med Genet. 2010;12(5):268–78. doi:10.1097/GIM.0b013e3181d6f7c0.

    Google Scholar 

  11. Gowrisankar S, Lerner-Ellis JP, Cox S, White ET, Manion M, LeVan K, et al. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications. J Mol Diagn JMD. 2010;12(6):818–27. doi:10.2353/jmoldx.2010.100014.

    Article  CAS  PubMed  Google Scholar 

  12. Grimbacher B, Schaffer AA, Holland SM, Davis J, Gallin JI, Malech HL, et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet. 1999;65(3):735–44. doi:10.1086/302547.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66. doi:10.1126/scitranslmed.3002543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wei Q, Zhu H, Qian X, Chen Z, Yao J, Lu Y, et al. Targeted genomic capture and massively parallel sequencing to identify novel variants causing Chinese hereditary hearing loss. J Transl Med. 2014;12(1):311. doi:10.1186/s12967-014-0311-1.

    Article  PubMed Central  PubMed  Google Scholar 

  15. de Freitas ESR. Goncalves Dos Santos NF, Pereira VR, Amaral A. Simultaneous analysis of p53 protein expression and cell proliferation in irradiated human lymphocytes by flow cytometry. Dose-response publication Int Hormesis Soc. 2014;12(1):110–20. doi:10.2203/dose-response.13-015.Silva.

    Article  Google Scholar 

  16. Dion ML, Sekaly RP, Cheynier R. Estimating thymic function through quantification of T-cell receptor excision circles. Methods Mol Biol. 2007;380:197–213. doi:10.1007/978-1-59745-395-0_12.

    Article  CAS  PubMed  Google Scholar 

  17. Dasouki M, Okonkwo KC, Ray A, Folmsbeel CK, Gozales D, Keles S, et al. Deficient T Cell Receptor Excision Circles (TRECs) in autosomal recessive hyper IgE syndrome caused by DOCK8 mutation: implications for pathogenesis and potential detection by newborn screening. Clin Immunol. 2011;141(2):128–32. doi:10.1016/j.clim.2011.06.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55. doi:10.1016/j.immuni.2006.09.009.

    Article  CAS  PubMed  Google Scholar 

  19. Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allerg Clin Immunol. 2014;133(5):1410–9. doi:10.1016/j.jaci.2014.02.025.

    Article  CAS  Google Scholar 

  20. Sampson CJ, Valanne S, Fauvarque MO, Hultmark D, Ramet M, Williams MJ. The RhoGEF Zizimin-related acts in the Drosophila cellular immune response via the Rho GTPases Rac2 and Cdc42. Dev Comp Immunol. 2012;38(1):160–8. doi:10.1016/j.dci.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  21. Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, Katakai T, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood. 2012;119(19):4451–61. doi:10.1182/blood-2012-01-407098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang Q, Davis JC, Dove CG, Su HC. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers. 2010;29(3–4):131–9. doi:10.3233/DMA-2010-0737.

    PubMed  Google Scholar 

  23. Cote JF, Vuori K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 2007;17(8):383–93. doi:10.1016/j.tcb.2007.05.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Meller N, Merlot S, Guda C. CZH proteins: a new family of Rho-GEFs. J Cell Sci. 2005;118(Pt 21):4937–46. doi:10.1242/jcs.02671.

    Article  CAS  PubMed  Google Scholar 

  25. Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 2007;21(15):1833–56. doi:10.1101/gad.1566807.

    Article  CAS  PubMed  Google Scholar 

  26. Crawford G, Enders A, Gileadi U, Stankovic S, Zhang Q, Lambe T, et al. DOCK8 is critical for the survival and function of NKT cells. Blood. 2013;122(12):2052–61. doi:10.1182/blood-2013-02-482331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ham H, Guerrier S, Kim J, Schoon RA, Anderson EL, Hamann MJ, et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol. 2013;190(7):3661–9. doi:10.4049/jimmunol.1202792.

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz-Garcia R, Lermo-Rojo S, Martinez-Lostao L, Mancebo E, Mora-Diaz S, Paz-Artal E, et al. A case of partial dedicator of cytokinesis 8 deficiency with altered effector phenotype and impaired CD8 and natural killer cell cytotoxicity. J Allerg Clin Immunol. 2014;. doi:10.1016/j.jaci.2014.01.023.

    Google Scholar 

  29. Mizesko MC, Banerjee PP, Monaco-Shawver L, Mace EM, Bernal WE, Sawalle-Belohradsky J, et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J Allerg Clin Immunol. 2013;131(3):840–8. doi:10.1016/j.jaci.2012.12.1568.

    Article  CAS  Google Scholar 

  30. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50. doi:10.1038/ni833.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participating patients and families for their kind cooperation in this study. This work was supported by the Public Welfare Scientific Research Project of China (201402012) and the National Natural Science Foundation of China (81302598).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Xiaodong Zhao.

Ethics declarations

Conflicts of interest

The authors have no potential financial conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human materials were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., An, Y., Liu, C. et al. Novel DOCK8 gene mutations lead to absence of protein expression in patients with hyper-IgE syndrome. Immunol Res 64, 260–271 (2016). https://doi.org/10.1007/s12026-015-8745-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8745-y

Keywords

Navigation