Skip to main content
Log in

Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacKenzie EJ. Epidemiology of injuries: current trends and future challenges. Epidemiol Rev. 2000;22:112–9.

    Article  CAS  PubMed  Google Scholar 

  2. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45.

    Article  PubMed  Google Scholar 

  3. Parke AL, Liu PT, Parke DV. Multiple organ dysfunction syndrome. Inflammopharmacology. 2003;11:87–95.

    Article  CAS  PubMed  Google Scholar 

  4. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008;29:617–25 viii.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36:691–709.

    Article  PubMed  Google Scholar 

  6. Moore FA, Moore EE, Read RA. Postinjury multiple organ failure: role of extrathoracic injury and sepsis in adult respiratory distress syndrome. New Horiz. 1993;1:538–49.

    CAS  PubMed  Google Scholar 

  7. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  8. Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol. 2007;7:305–10.

    Article  CAS  PubMed  Google Scholar 

  9. Murphy TJ, Ni CN, Zang Y, Mannick JA, Lederer JA. CD4+ CD25+ regulatory T cells control innate immune reactivity after injury. J Immunol. 2005;174:2957–63.

    Article  CAS  PubMed  Google Scholar 

  10. Hanschen M, Tajima G, O’Leary F, Ikeda K, Lederer JA. Injury induces early activation of T-cell receptor signaling pathways in CD4+ regulatory T cells. Shock. 2011;35:252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45.

    Article  CAS  PubMed  Google Scholar 

  12. Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res. 2002;22:913–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hilf N, Singh-Jasuja H, Schwarzmaier P, Gouttefangeas C, Rammensee HG, Schild H. Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood. 2002;99:3676–82.

    Article  CAS  PubMed  Google Scholar 

  14. Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol. 2004;172:2011–5.

    Article  CAS  PubMed  Google Scholar 

  15. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.

    Article  CAS  PubMed  Google Scholar 

  16. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  17. Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. de Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112:666–77.

    Article  PubMed  Google Scholar 

  19. Levi M, Schultz M. Coagulopathy and platelet disorders in critically ill patients. Minerva Anestesiol. 2010;76:851–9.

    CAS  PubMed  Google Scholar 

  20. Fujimi S, MacConmara MP, Maung AA, Zang Y, Mannick JA, Lederer JA, Lapchak PH. Platelet depletion in mice increases mortality after thermal injury. Blood. 2006;107:4399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peters MJ, Dixon G, Kotowicz KT, Hatch DJ, Heyderman RS, Klein NJ. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br J Haematol. 1999;106:391–9.

    Article  CAS  PubMed  Google Scholar 

  22. Andrews RK, Arthur JF, Gardiner E. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb Haemost. 2014;112:659–65.

    Article  PubMed  Google Scholar 

  23. Khandoga A, Hanschen M, Kessler JS, Krombach F. CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology. 2006;43:306–15.

    Article  CAS  PubMed  Google Scholar 

  24. Li N. CD4+ T cells in atherosclerosis: regulation by platelets. Thromb Haemost. 2013;109:980–90.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu L, Huang Z, Stalesen R, Hansson GK, Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost. 2014;12:1156–65.

    Article  CAS  PubMed  Google Scholar 

  26. Matarese G, De Rosa V, La Cava A. Regulatory CD4 T cells: sensing the environment. Trends Immunol. 2008;29:12–7.

    Article  PubMed  Google Scholar 

  27. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanschen M, Tajima G, O’Leary F, Hoang K, Ikeda K, Lederer JA. Phospho-flow cytometry based analysis of differences in T cell receptor signaling between regulatory T cells and CD4+ T cells. J Immunol Methods. 2012;376:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thebault S, Ochoa-Garay J. Characterization of TCR-induced phosphorylation of PKCtheta in primary murine lymphocytes. Mol Immunol. 2004;40:931–42.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi K, Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res. 2007;55:537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirlashari MR, Ryningen A, Mikkelsen HM, Fukami MH. Differential secretion of blood platelet storage granules. Platelets. 1996;7:313–20.

    Article  CAS  PubMed  Google Scholar 

  32. Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger–damage control by the immune system. J Leukoc Biol. 2012;92:539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stieritz DD, Holder IA. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis. 1975;131:688–91.

    Article  CAS  PubMed  Google Scholar 

  34. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun. 1999;67:5854–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Akinosoglou K, Alexopoulos D. Use of antiplatelet agents in sepsis: a glimpse into the future. Thromb Res. 2014;133:131–8.

    Article  CAS  PubMed  Google Scholar 

  36. Muhlestein JB. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb Haemost. 2010;103:71–82.

    Article  CAS  PubMed  Google Scholar 

  37. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521–30.

    Article  CAS  PubMed  Google Scholar 

  38. Forde PF, Sadadcharam M, Hall LJ, O’Donovan TR, de Kruijf M, Byrne WL, O’Sullivan GC, Soden DM. Enhancement of electroporation facilitated immunogene therapy via T-reg depletion. Cancer Gene Ther. 2014;21:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Setiady YY, Coccia JA, Park PU. In vivo depletion of CD4+ FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes. Eur J Immunol. 2010;40:780–6.

    Article  CAS  PubMed  Google Scholar 

  40. Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest. 2004;114:1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Fritz Seidl, M.A. translating and interpreting, administration staff of the department, for editing and language revision of this manuscript. This report includes experimental work performed by C.B. Bergmann in fulfillment of his doctoral thesis requirements in the context of the program ‘Translational Medicine.’ This study was supported by grant funding from the Technical University Munich, ‘Kommission fuer Klinische Forschung’ C09-11 (M.H.) and a stipend program ‘Translational Medicine’ (C.B.B.).

Author contributions

C.B.B., M.v.G. and M.H. designed the research; C.B.B., F.H., M.U. and M.H. performed the research; C.B.B., M.v.G. and M.H. performed statistical analysis, C.B.B., S.H.-W., P.B., M.v.G. and M.H. analyzed and interpreted data, and C.B.B. and M.H. wrote the manuscript; all authors reviewed the draft manuscript and approved the final version for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hanschen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, C.B., Hefele, F., Unger, M. et al. Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res 64, 508–517 (2016). https://doi.org/10.1007/s12026-015-8726-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8726-1

Keywords

Navigation