Skip to main content

Advertisement

Log in

Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Primary immune thrombocytopenia (ITP) is an autoimmune heterogeneous disorder. Excessive activated CD4+ T effector cells (Teffs) and compromised regulatory T cells (Tregs) were reported in ITP patients, yet little is known about the mechanisms. Interleukin-10 (IL-10) is an important regulatory cytokine of Tregs in inflammatory condition. It has been recently highlighted that IL-10-producing Tregs contribute to the effective controls of several autoimmune diseases. Hence this study was aimed to examine the role of IL-10 produced by Tregs in newly diagnosed ITP patients. Newly diagnosed ITP patients and healthy volunteers were enrolled to assess the numbers of peripheral Th1, Th17 cells and Tregs. CD4+CD25Teffs and CD4+CD25+Tregs were purified. CD4+CD25Teffs, labeled with CFSE, were cultured alone or with Tregs for 5 days, and the supernatants were then collected for IL-10 concentration test. The role of IL-10 in Tregs’ inhibitory function was also determined. In ITP patients, Teffs were excessively activated, while the Tregs were numerically and functionally impaired. The percentages of IL-10+ Tregs in Tregs’ population were found elevated dramatically in ITP patients but decreased in the remitted patients. The IL-10 concentrations in the cultured supernatant were decreased in ITP patients but elevated in the remitted patients. Furthermore, the IL-10 secretion by Tregs was dramatically decreased in ITP patients. IL-10 treatment enhanced the suppression effect of Tregs toward Teffs, whereas anti-IL-10 treatment boosted the proliferation of Teffs and Th17 cells. Excessive activated Teffs and impaired Tregs play major roles in the exuberant CD4+ T cells immune responses of ITP. The inhibitory effect of Tregs toward Teffs is largely exerted by IL-10. Insufficient secretion of IL-10 compromises the inhibitory capability of Tregs against Teffs in newly diagnosed ITP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386–93. doi:10.1182/blood-2008-07-162503.

    Article  CAS  PubMed  Google Scholar 

  2. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood. 2004;103(7):2645–7. doi:10.1182/blood-2003-07-2268.

    Article  CAS  PubMed  Google Scholar 

  3. Pene J, Chevalier S, Preisser L, Venereau E, Guilleux MH, Ghannam S, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol. 2008;180(11):7423–30.

    Article  CAS  PubMed  Google Scholar 

  4. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  CAS  PubMed  Google Scholar 

  5. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Guo ZX, Chen ZP, Zheng CL, Jia HR, Ge J, Gu DS, et al. The role of Th17 cells in adult patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2009;82(6):488–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sollazzo D, Trabanelli S, Curti A, Vianelli N, Lemoli RM, Catani L. Circulating CD4+ CD161+ CD196+ Th17 cells are not increased in immune thrombocytopenia. Haematologica. 2011;96(4):632–4.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ji L, Zhan Y, Hua F, Li F, Zou S, Wang W, et al. The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia. PLoS One. 2012;7(12):e50909. doi:10.1371/journal.pone.0050909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhu X, Ma D, Zhang J, Peng J, Qu X, Ji C, et al. Elevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia. J Clin Immunol. 2010;30(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Ma D, Zhu X, Qu X, Ji C, Hou M. Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica. 2009;94(9):1326–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rocha AM, Souza C, Rocha GA, de Melo FF, Clementino NC, Marino MC, et al. The levels of IL-17A and of the cytokines involved in Th17 cell commitment are increased in patients with chronic immune thrombocytopenia. Haematologica. 2011;96(10):1560–4. doi:10.3324/haematol.2011.046417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112(4):1325–8. doi:10.1182/blood-2008-01-135335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liu B, Zhao H, Poon MC, Han Z, Gu D, Xu M, et al. Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol. 2007;78(2):139–43.

    CAS  PubMed  Google Scholar 

  14. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.

    Article  CAS  PubMed  Google Scholar 

  15. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev. 2011;10(12):744–55.

    Article  CAS  PubMed  Google Scholar 

  16. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity. 2008;28(4):468–76.

    Article  PubMed  Google Scholar 

  17. Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol. 2011;23(6):424–30. doi:10.1016/j.smim.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3(−) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity. 2011;34(4):554–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. de Kouchkovsky D, Esensten JH, Rosenthal WL, Morar MM, Bluestone JA, Jeker LT. MicroRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. J Immunol. 2013;191(4):1594–605.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kornete M, Sgouroudis E, Piccirillo CA. ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol. 2012;188(3):1064–74.

    Article  CAS  PubMed  Google Scholar 

  22. Moon SJ, Park JS, Heo YJ, Kang CM, Kim EK, Lim MA, et al. In vivo action of IL-27: reciprocal regulation of Th17 and Treg cells in collagen-induced arthritis. Exp Mol Med. 2013;45:e46.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bao W, Bussel JB, Heck S, He W, Karpoff M, Boulad N, et al. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood. 2010;116(22):4639–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Stasi R, Cooper N, Del Poeta G, Stipa E, Laura Evangelista M, Abruzzese E, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood. 2008;112(4):1147–50. doi:10.1182/blood-2007-12-129262.

    Article  CAS  PubMed  Google Scholar 

  25. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol. 1991;146(10):3444–51.

    CAS  PubMed  Google Scholar 

  26. Ding L, Shevach EM. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol. 1992;148(10):3133–9.

    CAS  PubMed  Google Scholar 

  27. Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol. 2007;8(12):1372–9.

    Article  CAS  PubMed  Google Scholar 

  28. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.

    Article  CAS  PubMed  Google Scholar 

  29. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115(2):168–86.

    Article  CAS  PubMed  Google Scholar 

  30. Neunert C, Lim W, Crowther M, Cohen A, Solberg L Jr, Crowther MA. The american society of hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood. 2011;117(16):4190–207.

    Article  CAS  PubMed  Google Scholar 

  31. Semple JW, Freedman J. Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood. 1991;78(10):2619–25.

    CAS  PubMed  Google Scholar 

  32. Ogawara H, Handa H, Morita K, Hayakawa M, Kojima J, Amagai H, et al. High Th1/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;71(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kuwana M, Ikeda Y. The role of autoreactive T-cells in the pathogenesis of idiopathic thrombocytopenic purpura. Int J Hematol. 2005;81(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  34. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–81.

    Article  CAS  PubMed  Google Scholar 

  35. Kole A, He J, Rivollier A, Silveira DD, Kitamura K, Maloy KJ, et al. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J Immunol. 2013;191(5):2771–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol. 2007;8(12):1363–71.

    Article  CAS  PubMed  Google Scholar 

  37. Hall AO, Beiting DP, Tato C, John B, Oldenhove G, Lombana CG, et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity. 2012;37(3):511–23.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10(11):1178–84. doi:10.1038/ni.1791.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Chang JH, Xiao Y, Hu H, Jin J, Yu J, Zhou X, et al. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat Immunol. 2012;13(5):481–90. doi:10.1038/ni.2267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Naundorf S, Schroder M, Hoflich C, Suman N, Volk HD, Grutz G. IL-10 interferes directly with TCR-induced IFN-gamma but not IL-17 production in memory T cells. Eur J Immunol. 2009;39(4):1066–77.

    Article  CAS  PubMed  Google Scholar 

  41. Gu Y, Yang J, Ouyang X, Liu W, Li H, Yang J, et al. Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur J Immunol. 2008;38(7):1807–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM. T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol. 2006;7(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  43. Hua F, Ji L, Zhan Y, Li F, Zou S, Wang X, et al. Pulsed high-dose dexamethasone improves interleukin 10 secretion by CD5+ B cells in patients with primary immune thrombocytopenia. J Clin Immunol. 2012;32(6):1233–42. doi:10.1007/s10875-012-9714-z.

    Article  CAS  PubMed  Google Scholar 

  44. Kamanaka M, Huber S, Zenewicz LA, Gagliani N, Rathinam C, O’Connor W Jr, et al. Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology. J Exp Med. 2011;208(5):1027–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (30972737, 81170473 and 81300381) and Shanghai Health Bureau Funding (20134y117 and 20124223). All authors obtain permission to acknowledge from all those mentioned in the Acknowledgements.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Chen or Yunfeng Cheng.

Additional information

Feng Li and Lili Ji have contributed equally to this work as the first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12026_2014_8620_MOESM1_ESM.tif

The purification of Tregs and Teffs. Representative dot plots of CD4+T cells, CD4+CD25+ Tregs, and CD4+CD25 Teffs. The purification of each cell type was above 90 % (TIFF 1201 kb)

12026_2014_8620_MOESM2_ESM.tif

Comparative percentage of IL-10+ Teffs was detected in the NC and ITP groups. NC: normal control; ITP: ITP group; p values were indicated in the figure (TIFF 269 kb)

12026_2014_8620_MOESM3_ESM.tif

Isotype control FCM figure for Fig. 1j. It is the isotype control figure for Foxp3 and IL-10 antigen in PBMCs stimulated with PMA, ionomycin and BFA (TIFF 353 kb)

12026_2014_8620_MOESM4_ESM.tif

Isotype control FCM figure for Fig. 2a and c. It is the isotype control figure for IFN-γ and il-17A antigen of CD4+T cells cultured for 5 days, stimulated with PMA, ionomycin and BFA (TIFF 385 kb)

12026_2014_8620_MOESM5_ESM.tif

Isotype control FCM figure for Fig. 3a. It is the isotype control figure for Foxp3 and IL-10 antigen in CD4+CD25+T cells cultured for 5 days, stimulated with PMA, ionomycin and BFA (TIFF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Ji, L., Wang, W. et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res 61, 269–280 (2015). https://doi.org/10.1007/s12026-014-8620-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8620-2

Keywords

Navigation