Skip to main content

Advertisement

Log in

Accumulation of FLT3+ CD11c+ dendritic cells in psoriatic lesions and the anti-psoriatic effect of a selective FLT3 inhibitor

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Psoriasis is a common chronic T-cell-mediated autoimmune skin disease, and traditional immunotherapies for psoriasis have focused on the direct inhibition of T cells, which often causes toxicity and lacks long-term effectiveness. Safe and effective therapeutic strategies are strongly needed for psoriasis. In this study, we show for the first time a significant accumulation of FLT3+ CD11c+ dendritic cells (DCs) in human psoriatic lesions and in the skin of experimental preclinical K14-VEGF transgenic homozygous mice, our animal model, although not an exact match for human psoriasis, displays many characteristics of inflammatory skin inflammation. SKLB4771, a potent and selective FLT3 inhibitor that we designed and synthesised, was used to treat cutaneous inflammation and psoriasis-like symptoms of disease in mice and almost completely cured the psoriasis-like disease without obvious toxicity. Mechanistic studies indicated that SKLB4771 treatment significantly decreased the number and activation of pDCs and mDCs in vitro and in vivo, and subsequent T-cell cascade reactions mediated by Th1/Th17 pathways. These findings show that targeted inhibition of FLT3, and hence direct interference with DCs, may be a novel therapeutic approach for the treatment of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christensen TE, Callis KP, Papenfuss J, Hoffman MS, Hansen CB, Wong B, et al. Observations of psoriasis in the absence of therapeutic intervention identifies two unappreciated morphologic variants, thin-plaque and thick-plaque psoriasis, and their associated phenotypes. J Invest Dermatol. 2006;126(11):2397–403. doi:10.1038/sj.jid.5700489.

    Article  CAS  PubMed  Google Scholar 

  2. Schon MP, Boehncke WH. Psoriasis. N Engl J Med. 2005;352(18):1899–912. doi:10.1056/NEJMra041320.

    Article  CAS  PubMed  Google Scholar 

  3. Bowcock AM, Krueger JG. Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol. 2005;5(9):699–711. doi:10.1038/nri1689.

    Article  CAS  PubMed  Google Scholar 

  4. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866–73. doi:10.1038/nature05663.

    Article  CAS  PubMed  Google Scholar 

  5. Chamian F, Krueger JG. Psoriasis vulgaris: an interplay of T lymphocytes, dendritic cells, and inflammatory cytokines in pathogenesis. Curr Opin Rheumatol. 2004;16(4):331–7.

    Article  PubMed  Google Scholar 

  6. Conrad C, Gilliet M. Type I IFNs at the interface between cutaneous immunity and epidermal remodeling. J Invest Dermatol. 2012;132(7):1759–62. doi:10.1038/jid.2012.149.

    Article  CAS  PubMed  Google Scholar 

  7. Whartenby KA, Small D, Calabresi PA. FLT3 inhibitors for the treatment of autoimmune disease. Expert Opin Investig Drugs. 2008;17(11):1685–92. doi:10.1517/13543784.17.11.1685.

    Article  CAS  PubMed  Google Scholar 

  8. Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 2010;9(4):425–37. doi:10.1016/S1474-4422(10)70040-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jariwala SP. The role of dendritic cells in the immunopathogenesis of psoriasis. Arch Dermatol Res. 2007;299(8):359–66. doi:10.1007/s00403-007-0775-4.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Poppensieker K, Otte DM, Schurmann B, Limmer A, Dresing P, Drews E, et al. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proc Natl Acad Sci. 2012;109(10):3897–902. doi:10.1073/pnas.1114153109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sinha S, Miller L, Subramanian S, McCarty OJ, Proctor T, Meza-Romero R, et al. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;225(1–2):52–61. doi:10.1016/j.jneuroim.2010.04.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Skarica M, Wang T, McCadden E, Kardian D, Calabresi PA, Small D, et al. Signal transduction inhibition of APCs diminishes th17 and Th1 responses in experimental autoimmune encephalomyelitis. J Immunol. 2009;182(7):4192–9. doi:10.4049/jimmunol.0803631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chastain EM, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):265–74. doi:10.1016/j.bbadis.2010.07.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, Cartagena CM, et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17(5):604–9. doi:10.1038/nm.2365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yang C, Robbins PD. Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol. 2012;2012:573528. doi:10.1155/2012/573528.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lau-Kilby AW, Kretz CC, Pechhold S, Price JD, Dorta S, Ramos H, et al. Interleukin-2 inhibits FMS-like tyrosine kinase 3 receptor ligand (flt3L)-dependent development and function of conventional and plasmacytoid dendritic cells. Proc Natl Acad Sci. 2011;108(6):2408–13. doi:10.1073/pnas.1009738108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Albanesi C, Scarponi C, Bosisio D, Sozzani S, Girolomoni G. Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity. 2010;43(3):215–9. doi:10.3109/08916930903510906.

    Article  CAS  PubMed  Google Scholar 

  18. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci. 2005;102(52):19057–62. doi:10.1073/pnas.0509736102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol. 2008;181(10):7420–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature. 2011;472(7344):486–90. doi:10.1038/nature09978.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lyman SD, Jacobsen SE. c-Kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91(4):1101–34.

    CAS  PubMed  Google Scholar 

  22. O’Keeffe M, Hochrein H, Vremec D, Pooley J, Evans R, Woulfe S, et al. Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood. 2002;99(6):2122–30.

    Article  PubMed  Google Scholar 

  23. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood. 2000;96(3):878–84.

    CAS  PubMed  Google Scholar 

  24. D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med. 2003;198(2):293–303. doi:10.1084/jem.20030107.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. Flt3 ligand regulates dendritic cell development from Flt3 + lymphoid and myeloid-committed progenitors to Flt3 + dendritic cells in vivo. J Exp Med. 2003;198(2):305–13. doi:10.1084/jem.20030323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96(9):3029–39.

    CAS  PubMed  Google Scholar 

  27. Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, Rudensky A, et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol. 1997;159(5):2222–31.

    CAS  PubMed  Google Scholar 

  28. Whartenby KA, Calabresi PA, McCadden E, Nguyen B, Kardian D, Wang T, et al. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc Natl Acad Sci. 2005;102(46):16741–6. doi:10.1073/pnas.0506088102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schonthaler HB, Huggenberger R, Wculek SK, Detmar M, Wagner EF. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc Natl Acad Sci. 2009;106(50):21264–9. doi:10.1073/pnas.0907550106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161–8. doi:10.1182/blood-2002-12-3793.

    Article  CAS  PubMed  Google Scholar 

  31. Hvid H, Teige I, Kvist PH, Svensson L, Kemp K. TPA induction leads to a Th17-like response in transgenic K14/VEGF mice: a novel in vivo screening model of psoriasis. Int Immunol. 2008;20(8):1097–106. doi:10.1093/intimm/dxn068.

    Article  CAS  PubMed  Google Scholar 

  32. Tussiwand R, Onai N, Mazzucchelli L, Manz MG. Inhibition of natural type I IFN-producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity. J Immunol. 2005;175(6):3674–80.

    Article  CAS  PubMed  Google Scholar 

  33. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.

    Article  CAS  PubMed  Google Scholar 

  34. Baker BS, Brent L, Valdimarsson H, Powles AV, al-Imara L, Walker M, et al. Is epidermal cell proliferation in psoriatic skin grafts on nude mice driven by T-cell derived cytokines? Br J Dermatol. 1992;126(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  35. Ward NL, Loyd CM, Wolfram JA, Diaconu D, Michaels CM, McCormick TS. Depletion of antigen-presenting cells by clodronate liposomes reverses the psoriatic skin phenotype in KC-Tie2 mice. Br J Dermatol. 2011;164(4):750–8. doi:10.1111/j.1365-2133.2010.10129.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hsieh CY, Chen CL, Tsai CC, Huang WC, Tseng PC, Lin YS, et al. Inhibiting glycogen synthase kinase-3 decreases 12-O-tetradecanoylphorbol-13-acetate-induced interferon-gamma-mediated skin inflammation. J Pharmacol Exp Ther. 2012;343(1):125–33. doi:10.1124/jpet.112.194100.

    Article  CAS  PubMed  Google Scholar 

  37. Singh TP, Schon MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS ONE. 2013;8(1):e51752. doi:10.1371/journal.pone.0051752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Halin C, Fahrngruber H, Meingassner JG, Bold G, Littlewood-Evans A, Stuetz A, et al. Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am J Pathol. 2008;173(1):265–77. doi:10.2353/ajpath.2008.071074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–43. doi:10.1084/jem.20050500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  41. Li WW, Wang XY, Zheng RL, Yan HX, Cao ZX, Zhong L, et al. Discovery of the novel potent and selective FLT3 inhibitor 1-{5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3, 4]thiadiazol-2-yl}-3-p-tolylurea and its anti-acute myeloid leukemia (AML) activities in vitro and in vivo. J Med Chem. 2012;55(8):3852–66. doi:10.1021/jm300042x.

    Article  CAS  PubMed  Google Scholar 

  42. Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN, et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 2000;14(2):232–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–708.

    Article  CAS  PubMed  Google Scholar 

  44. Laouar Y, Welte T, Fu XY, Flavell RA. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 2003;19(6):903–12.

    Article  CAS  PubMed  Google Scholar 

  45. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30. doi:10.1084/jem.20030451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sabat R, Philipp S, Hoflich C, Kreutzer S, Wallace E, Asadullah K, et al. Immunopathogenesis of psoriasis. Exp Dermatol. 2007;16(10):779–98. doi:10.1111/j.1600-0625.2007.00629.x.

    Article  CAS  PubMed  Google Scholar 

  47. Krueger JG. The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol. 2002;46(1):1–23 quiz-6.

    Article  PubMed  Google Scholar 

  48. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, et al. The vast majority of CLA + T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9.

    Article  CAS  PubMed  Google Scholar 

  49. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7(4):425–9. doi:10.1038/86490.

    Article  CAS  PubMed  Google Scholar 

  50. Groves RW, Allen MH, Barker JN, Haskard DO, MacDonald DM. Endothelial leucocyte adhesion molecule-1 (ELAM-1) expression in cutaneous inflammation. Br J Dermatol. 1991;124(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  51. Groves RW, Ross EL, Barker JN, MacDonald DM. Vascular cell adhesion molecule-1: expression in normal and diseased skin and regulation in vivo by interferon gamma. J Am Acad Dermatol. 1993;29(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  52. Lew W, Bowcock AM, Krueger JG. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and “type 1” inflammatory gene expression. Trends Immunol. 2004;25(6):295–305. doi:10.1016/j.it.2004.03.006.

    Article  CAS  PubMed  Google Scholar 

  53. Haider AS, Lowes MA, Suarez-Farinas M, Zaba LC, Cardinale I, Khatcherian A, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 2008;180(3):1913–20.

    Article  CAS  PubMed  Google Scholar 

  54. Fitch EL, Rizzo HL, Kurtz SE, Wegmann KW, Gao W, Benson JM, et al. Inflammatory skin disease in K5.hTGF-beta1 transgenic mice is not dependent on the IL-23/Th17 inflammatory pathway. J Invest Dermatol. 2009;129(10):2443–50. doi:10.1038/jid.2009.88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Singh TP, Schon MP, Wallbrecht K, Michaelis K, Rinner B, Mayer G, et al. 8-Methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3 + regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol. 2010;184(12):7257–67. doi:10.4049/jimmunol.0903719.

    Article  CAS  PubMed  Google Scholar 

  56. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci. 2001;98(25):14541–6. doi:10.1073/pnas.261562798.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, et al. Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity. 2001;15(4):659–69.

    Article  CAS  PubMed  Google Scholar 

  58. Dombret H. Gene mutation and AML pathogenesis. Blood. 2011;118(20):5366–7. doi:10.1182/blood-2011-09-379081.

    Article  CAS  PubMed  Google Scholar 

  59. Mukda E, Pintaraks K, Sawangpanich R, Wiangnon S, Pakakasama S. FLT3 and NPM1 gene mutations in childhood acute myeloblastic leukemia. Asian Pac J Cancer Prev. 2011;12(7):1827–31.

    PubMed  Google Scholar 

  60. Al-Kali A, Cortes J, Faderl S, Jones D, Abril C, Pierce S, et al. Patterns of molecular response to and relapse after combination of sorafenib, idarubicin, and cytarabine in patients with FLT3 mutant acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2011;11(4):361–6. doi:10.1016/j.clml.2011.06.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bjorck P. Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood. 2001;98(13):3520–6.

    Article  CAS  PubMed  Google Scholar 

  62. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92. doi:10.1182/blood-2009-05-222034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006;108(10):3494–503. doi:10.1182/blood-2006-04-015487.

    Article  CAS  PubMed  Google Scholar 

  64. Loges S, Tinnefeld H, Metzner A, Jucker M, Butzal M, Bruweleit M, et al. Downregulation of VEGF-A, STAT5 and AKT in acute myeloid leukemia blasts of patients treated with SU5416. Leuk Lymphoma. 2006;47(12):2601–9. doi:10.1080/10428190600948253.

    Article  CAS  PubMed  Google Scholar 

  65. Lopes de Menezes DE, Peng J, Garrett EN, Louie SG, Lee SH, Wiesmann M, et al. CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin Cancer Res. 2005;11(14):5281–91. doi:10.1158/1078-0432.CCR-05-0358.

    Article  CAS  PubMed  Google Scholar 

  66. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Gotze K, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012. doi:10.1038/leu.2012.105.

    PubMed  Google Scholar 

  67. Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE, Ali N, et al. Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J Immunol. 2011;187(5):2783–93. doi:10.4049/jimmunol.1100804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35(4):596–610. doi:10.1016/j.immuni.2011.08.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mabuchi T, Takekoshi T, Hwang ST. Epidermal CCR6 + gammadelta T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J Immunol. 2011;187(10):5026–31. doi:10.4049/jimmunol.1101817.

    Article  CAS  PubMed  Google Scholar 

  70. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al. Rorgammat + innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest. 2012;122(6):2252–6. doi:10.1172/JCI61862.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81172987), the National Science and Technology Major Project (2012ZX09501001-003), PCSIRT (IRT13031), and the Applied Basic Research Program of Sichuan Province (2014JY0038). We thank Dr. Tao Chen from the Department of Dermatovenereology, West China Hospital, Sichuan University for his assistance in obtaining patient skin biopsies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Yong Yang or Yu-Quan Wei.

Additional information

Heng-Xiu Yan, Wei-Wei Li and Yan Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12026_2014_8521_MOESM1_ESM.tif

Supplement Fig 1 Inhibition of FLT3 + CD11c + precursor in bone marrow by SKLB4771 treatment in vivo. Flow cytometric quantification of FLT3+ CD11c+ precursor in bone marrow isolated from vehicle-treated psoriatic plaque lesions and SKLB4771-treated lesions. The number of decreased in psoriatic plaque lesions of SKLB4771-treated mice when compared with vehicle-treated mice (mean ± S.D., n = 6 per group). Ordinates in the histogram indicate the percentage of FLT3+ CD11c+ precursor within total cells. Data are representative of three independent experiments. (TIFF 80 kb)

12026_2014_8521_MOESM2_ESM.tif

Supplement Fig 2 Inhibition of IL-12p70 by SKLB4771 treatment in vivo. Homogenised ear tissues from SKLB4771- or vehicle-treated groups were investigated by ELISA. The amount of IL-12p70 was found to be significantly decreased in SKLB4771-treated mice (mean ± S.D., n = 3 per group). (TIFF 232 kb)

Supplementary material 3 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, HX., Li, WW., Zhang, Y. et al. Accumulation of FLT3+ CD11c+ dendritic cells in psoriatic lesions and the anti-psoriatic effect of a selective FLT3 inhibitor. Immunol Res 60, 112–126 (2014). https://doi.org/10.1007/s12026-014-8521-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8521-4

Keywords

Navigation