Skip to main content

Advertisement

Log in

Innate immune responses to HIV infection in the central nervous system

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV) invades the brain early during infection and generates a chronic inflammatory microenvironment that can eventually result in neurological disease, even in the absence of significant viral replication. Thus, HIV-1 infection of the brain has been characterized both as a neuroimmunological and neurodegenerative disorder. While the brain and central nervous system (CNS) have historically been regarded as immune privileged or immunologically quiescent, newer concepts of CNS immunity suggest an important if not defining role for innate immune responses generated by glial cells. Innate immunity may be the first line of defense against HIV infection of the brain and CNS, with multiple cellular elements providing responses that can be anti-viral and neuroprotective, but also potentially neurotoxic, impairing neurogenesis and promoting neuronal apoptosis. To investigate the effects of HIV exposure on neurogenesis and neuronal survival, we have studied the responses of human neuroepithelial progenitor (NEP) cells, which undergo directed differentiation into astrocytes and neurons in vitro. We identified a group of genes that were differentially expressed in NEP-derived cells during virus exposure. This included genes that are strongly related to interferon-induced responses and antigen presentation. Moreover, we observed that the host factor apolipoprotein E influences the innate immune response expressed by these cells, with a more robust response in the apolipoprotein E3/E3 genotype cultures compared to the apolipoprotein E3/E4 counterparts. Thus, neuroepithelial progenitors and their differentiated progeny recognize HIV and respond to it by mounting an innate immune response with a vigor that is influenced by the host factor apolipoprotein E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smit TK, Wang B, Ng T, Osborne R, Brew B, Saksena NK. Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology. 2001;279(2):509–26. doi:10.1006/viro.2000.0681.

    Article  CAS  PubMed  Google Scholar 

  2. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.

    Article  CAS  PubMed  Google Scholar 

  3. An SF, Groves M, Gray F, Scaravilli F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol. 1999;58(11):1156–62.

    Article  CAS  PubMed  Google Scholar 

  4. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, et al. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS. 1996;10(6):573–85.

    Article  CAS  PubMed  Google Scholar 

  5. Witwer KW, Gama L, Li M, Bartizal CM, Queen SE, Varrone JJ, et al. Coordinated regulation of SIV replication and immune responses in the CNS. PLoS ONE. 2009;4(12):e8129. doi:10.1371/journal.pone.0008129.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. McCarthy M, He J, Wood C. HIV-1 strain-associated variability in infection of primary neuroglia. J Neurovirol. 1998;4(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lawrence DM, Durham LC, Schwartz L, Seth P, Maric D, Major EO. Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol. 2004;78(14):7319–28. doi:10.1128/JVI.78.14.7319-7328.2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rumbaugh JA, Nath A. Developments in HIV neuropathogenesis. Curr Pharm Des. 2006;12(9):1023–44.

    Article  CAS  PubMed  Google Scholar 

  9. Yao H, Bethel-Brown C, Li CZ, Buch SJ. HIV neuropathogenesis: a tight rope walk of innate immunity. J Neuroimmune Pharmacol. 2010;5(4):489–95. doi:10.1007/s11481-010-9211-1.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kaul M. HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci. 2008;13:2484–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron. 2013;78(2):214–32. doi:10.1016/j.neuron.2013.04.005.

    Article  CAS  PubMed  Google Scholar 

  12. Streit WJ, Kincaid-Colton CA. The brain’s immune system. Sci Am. 1995;273(5):54–5, 8–61.

    Google Scholar 

  13. Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15(2):313–26.

    Article  CAS  PubMed  Google Scholar 

  14. Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85(3):352–70. doi:10.1189/jlb.0608385.

    Article  CAS  PubMed  Google Scholar 

  15. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39(1):3–18. doi:10.1111/nan.12011.

    Article  CAS  PubMed  Google Scholar 

  16. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA. 1991;88(16):7438–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Becher B, Antel JP. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia. 1996;18(1):1–10. doi:10.1002/(SICI)1098-1136(199609)18:1<1:AID-GLIA1>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34. doi:10.3109/08830185.2010.529976.

    Article  CAS  PubMed  Google Scholar 

  19. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. doi:10.1038/nri1391.

    Article  CAS  PubMed  Google Scholar 

  20. Gras G, Chretien F, Vallat-Decouvelaere AV, Le Pavec G, Porcheray F, Bossuet C, et al. Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 2003;13(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  21. Vallat-Decouvelaere AV, Chretien F, Gras G, Le Pavec G, Dormont D, Gray F. Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J Neuropathol Exp Neurol. 2003;62(5):475–85.

    CAS  PubMed  Google Scholar 

  22. Kaushik DK, Gupta M, Basu A. Microglial response to viral challenges: every silver lining comes with a cloud. Front Biosci (Landmark Ed). 2011;16:2187–205.

    Google Scholar 

  23. Polazzi E, Levi G, Minghetti L. Human immunodeficiency virus type 1 Tat protein stimulates inducible nitric oxide synthase expression and nitric oxide production in microglial cultures. J Neuropathol Exp Neurol. 1999;58(8):825–31.

    Article  CAS  PubMed  Google Scholar 

  24. Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol. 2003;170(4):1716–27.

    Article  CAS  PubMed  Google Scholar 

  25. Muthumani K, Choo AY, Premkumar A, Hwang DS, Thieu KP, Desai BM, et al. Human immunodeficiency virus type 1 (HIV-1) Vpr-regulated cell death: insights into mechanism. Cell Death Differ. 2005;12(Suppl 1):962–70. doi:10.1038/sj.cdd.4401583.

    Article  CAS  PubMed  Google Scholar 

  26. Guo L, Xing Y, Pan R, Jiang M, Gong Z, Lin L, et al. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis. PLoS One. 2013;8(8):e70565. doi:10.1371/journal.pone.0070565.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS. HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol. 2010;221(1):231–45. doi:10.1016/j.expneurol.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  28. Asensio VC, Maier J, Milner R, Boztug K, Kincaid C, Moulard M, et al. Interferon-independent, human immunodeficiency virus type 1 gp120-mediated induction of CXCL10/IP-10 gene expression by astrocytes in vivo and in vitro. J Virol. 2001;75(15):7067–77. doi:10.1128/JVI.75.15.7067-7077.2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Churchill M, Nath A. Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS. 2013;8(3):165–9. doi:10.1097/COH.0b013e32835fc601.

    Article  CAS  PubMed  Google Scholar 

  30. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14. doi:10.1186/1742-2094-1-14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26(10):523–30. doi:10.1016/j.tins.2003.08.008.

    Article  CAS  PubMed  Google Scholar 

  32. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103(37):13606–11. doi:10.1073/pnas.0605843103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci USA. 2004;101(22):8384–9. doi:10.1073/pnas.0402140101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Davies DL, Niesman IR, Boop FA, Phelan KD. Heterogeneity of astroglia cultured from adult human temporal lobe. Int J Dev Neurosci. 2000;18(2–3):151–60.

    Article  CAS  PubMed  Google Scholar 

  35. Chaboub LS, Deneen B. Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci. 2012;34(5):379–88. doi:10.1159/000343723.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298(5593):556–62. doi:10.1126/science.298.5593.556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opin Neurobiol. 2001;11(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  38. Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8(4):824–39. doi:10.1007/s11481-013-9480-6.

    Article  PubMed  Google Scholar 

  39. Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999;19(16):6897–906.

    CAS  PubMed  Google Scholar 

  40. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13(2):54–63. doi:10.1016/j.molmed.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  41. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55(12):1263–71. doi:10.1002/glia.20557.

    Article  PubMed  Google Scholar 

  42. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122(7):2454–68. doi:10.1172/JCI60842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Chung IY, Benveniste EN. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol. 1990;144(8):2999–3007.

    CAS  PubMed  Google Scholar 

  44. Kutsch O, Oh J, Nath A, Benveniste EN. Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol. 2000;74(19):9214–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Song HY, Ryu J, Ju SM, Park LJ, Lee JA, Choi SY, et al. Extracellular HIV-1 Tat enhances monocyte adhesion by up-regulation of ICAM-1 and VCAM-1 gene expression via ROS-dependent NF-kappaB activation in astrocytes. Exp Mol Med. 2007;39(1):27–37. doi:10.1038/emm.2007.4.

    Article  CAS  PubMed  Google Scholar 

  46. Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, et al. Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol. 2003;13(2):144–54.

    Article  CAS  PubMed  Google Scholar 

  47. Shi B, De Girolami U, He J, Wang S, Lorenzo A, Busciglio J, et al. Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Invest. 1996;98(9):1979–90. doi:10.1172/JCI119002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Thompson KA, McArthur JC, Wesselingh SL. Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol. 2001;49(6):745–52.

    Article  CAS  PubMed  Google Scholar 

  49. Kim SY, Li J, Bentsman G, Brooks AI, Volsky DJ. Microarray analysis of changes in cellular gene expression induced by productive infection of primary human astrocytes: implications for HAD. J Neuroimmunol. 2004;157(1–2):17–26. doi:10.1016/j.jneuroim.2004.08.032.

    Article  CAS  PubMed  Google Scholar 

  50. Cosenza-Nashat MA, Si Q, Zhao ML, Lee SC. Modulation of astrocyte proliferation by HIV-1: differential effects in productively infected, uninfected, and Nef-expressing cells. J Neuroimmunol. 2006;178(1–2):87–99. doi:10.1016/j.jneuroim.2006.05.020.

    Article  CAS  PubMed  Google Scholar 

  51. Galey D, Becker K, Haughey N, Kalehua A, Taub D, Woodward J, et al. Differential transcriptional regulation by human immunodeficiency virus type 1 and gp120 in human astrocytes. J Neurovirol. 2003;9(3):358–71. doi:10.1080/13550280390201119.

    Article  CAS  PubMed  Google Scholar 

  52. Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol. 2010;5(1):44–62. doi:10.1007/s11481-009-9167-1.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Su ZZ, Kang DC, Chen Y, Pekarskaya O, Chao W, Volsky DJ, et al. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene. 2002;21(22):3592–602. doi:10.1038/sj.onc.1205445.

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Bentsman G, Potash MJ, Volsky DJ. Human immunodeficiency virus type 1 efficiently binds to human fetal astrocytes and induces neuroinflammatory responses independent of infection. BMC Neurosci. 2007;8:31. doi:10.1186/1471-2202-8-31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Benos DJ, Hahn BH, Bubien JK, Ghosh SK, Mashburn NA, Chaikin MA, et al. Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex. Proc Natl Acad Sci USA. 1994;91(2):494–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, et al. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology. 2003;312(1):60–73.

    Article  CAS  PubMed  Google Scholar 

  57. Prehaud C, Megret F, Lafage M, Lafon M. Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol. 2005;79(20):12893–904. doi:10.1128/JVI.79.20.12893-12904.2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wekerle H. Planting and pruning in the brain: MHC antigens involved in synaptic plasticity? Proc Natl Acad Sci USA. 2005;102(1):3–4. doi:10.1073/pnas.0408495101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H. Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J Exp Med. 1997;185(2):305–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Redwine JM, Buchmeier MJ, Evans CF. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol. 2001;159(4):1219–24. doi:10.1016/S0002-9440(10)62507-2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Petito CK, Torres-Munoz JE, Zielger F, McCarthy M. Brain CD8+ and cytotoxic T lymphocytes are associated with, and may be specific for, human immunodeficiency virus type 1 encephalitis in patients with acquired immunodeficiency syndrome. J Neurovirol. 2006;12(4):272–83. doi:10.1080/13550280600879204.

    Article  CAS  PubMed  Google Scholar 

  62. Chakraborty S, Nazmi A, Dutta K, Basu A. Neurons under viral attack: victims or warriors? Neurochem Int. 2010;56(6–7):727–35. doi:10.1016/j.neuint.2010.02.016.

    Article  CAS  PubMed  Google Scholar 

  63. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44. doi:10.1038/nrn2620.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S–9S.

    CAS  PubMed  Google Scholar 

  65. Kuhlmann I, Minihane AM, Huebbe P, Nebel A, Rimbach G. Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Lipids Health Dis. 2010;9:8. doi:10.1186/1476-511X-9-8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Egensperger R, Kosel S, von Eitzen U, Graeber MB. Microglial activation in Alzheimer disease: association with APOE genotype. Brain Pathol. 1998;8(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  67. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507–37.

    Article  CAS  PubMed  Google Scholar 

  68. Han X. The role of apolipoprotein E in lipid metabolism in the central nervous system. Cell Mol Life Sci. 2004;61(15):1896–906. doi:10.1007/s00018-004-4009-z.

    Article  CAS  PubMed  Google Scholar 

  69. Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol. 2005;37(6):1145–50. doi:10.1016/j.biocel.2004.10.004.

    Article  CAS  PubMed  Google Scholar 

  70. Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31(8):445–54. doi:10.1016/j.tibs.2006.06.008.

    Article  CAS  PubMed  Google Scholar 

  71. Qiu Z, Hyman BT, Rebeck GW. Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons. J Biol Chem. 2004;279(33):34948–56. doi:10.1074/jbc.M401055200.

    Article  CAS  PubMed  Google Scholar 

  72. Yamamoto T, Choi HW, Ryan RO. Apolipoprotein E isoform-specific binding to the low-density lipoprotein receptor. Anal Biochem. 2008;372(2):222–6. doi:10.1016/j.ab.2007.09.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D, Brewer HB Jr. Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest. 1986;78(3):815–21. doi:10.1172/JCI112645.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Weisgraber KH. Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res. 1990;31(8):1503–11.

    CAS  PubMed  Google Scholar 

  75. Weisgraber KH. Apolipoprotein E structure-function relationships. Adv Protein Chem. 1994;45:249–302.

    Article  CAS  PubMed  Google Scholar 

  76. Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E from lipid transport to neurobiology. Prog Lipid Res. 2011;50(1):62–74. doi:10.1016/j.plipres.2010.09.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. DeMattos RB, Rudel LL, Williams DL. Biochemical analysis of cell-derived apoE3 particles active in stimulating neurite outgrowth. J Lipid Res. 2001;42(6):976–87.

    CAS  PubMed  Google Scholar 

  78. Bellosta S, Nathan BP, Orth M, Dong LM, Mahley RW, Pitas RE. Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells produces differential effects on neurite outgrowth. J Biol Chem. 1995;270(45):27063–71.

    Article  CAS  PubMed  Google Scholar 

  79. Nathan BP, Jiang Y, Wong GK, Shen F, Brewer GJ, Struble RG. Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res. 2002;928(1–2):96–105.

    Article  CAS  PubMed  Google Scholar 

  80. DeMattos RB, Curtiss LK, Williams DL. A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J Biol Chem. 1998;273(7):4206–12.

    Article  CAS  PubMed  Google Scholar 

  81. Fagan AM, Bu G, Sun Y, Daugherty A, Holtzman DM. Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J Biol Chem. 1996;271(47):30121–5.

    Article  CAS  PubMed  Google Scholar 

  82. Frank A, Diez-Tejedor E, Bullido MJ, Valdivieso F, Barreiro P. APOE genotype in cerebrovascular disease and vascular dementia. J Neurol Sci. 2002;203–204:173–6.

    Article  PubMed  Google Scholar 

  83. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.

    Article  CAS  PubMed  Google Scholar 

  84. Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J, et al. HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med. 1998;4(10):1182–4.

    Article  CAS  PubMed  Google Scholar 

  85. Andres MA, Feger U, Nath A, Munsaka S, Jiang CS, Chang L. APOE epsilon4 allele and CSF APOE on cognition in HIV-infected subjects. J Neuroimmune Pharmacol. 2011;6(3):389–98. doi:10.1007/s11481-010-9254-3.

    Google Scholar 

  86. Dunlop O, Goplen AK, Liestol K, Myrvang B, Rootwelt H, Christophersen B, et al. HIV dementia and apolipoprotein E. Acta Neurol Scand. 1997;95(5):315–8.

    Article  CAS  PubMed  Google Scholar 

  87. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci USA. 2008;105(25):8718–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. de Bont N, Netea MG, Demacker PN, Verschueren I, Kullberg BJ, van Dijk KW, et al. Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection. J Lipid Res. 1999;40(4):680–5.

    PubMed  Google Scholar 

  89. Roselaar SE, Daugherty A. Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J Lipid Res. 1998;39(9):1740–3.

    CAS  PubMed  Google Scholar 

  90. Ophir G, Amariglio N, Jacob-Hirsch J, Elkon R, Rechavi G, Michaelson DM. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis. 2005;20(3):709–18. doi:10.1016/j.nbd.2005.05.002.

    Article  CAS  PubMed  Google Scholar 

  91. Ophir G, Meilin S, Efrati M, Chapman J, Karussis D, Roses A, et al. Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol Dis. 2003;12(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  92. Vitek MP, Brown CM, Colton CA. APOE genotype-specific differences in the innate immune response. Neurobiol Aging. 2009;30(9):1350–60. doi:10.1016/j.neurobiolaging.2007.11.014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ. Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006;20(6):797–9. doi:10.1096/fj.05-5423fje.

    CAS  PubMed  Google Scholar 

  94. Maezawa I, Maeda N, Montine TJ, Montine KS. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice. J Neuroinflammation. 2006;3:10. doi:10.1186/1742-2094-3-10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. McCarthy M, Vidaurre I, Geffin R. Maturing neurons are selectively sensitive to human immunodeficiency virus type 1 exposure in differentiating human neuroepithelial progenitor cell cultures. J Neurovirol. 2006;12(5):333–48. doi:10.1080/13550280600915347.

    Article  CAS  PubMed  Google Scholar 

  96. Martinez R, Chunjing W, Geffin R, McCarthy M. Depressed neurofilament expression associates with apolipoprotein E3/E4 genotype in maturing human fetal neurons exposed to HIV-1. J Neurovirol. 2012;18(4):323–30. doi:10.1007/s13365-012-0079-0.

    Article  CAS  PubMed  Google Scholar 

  97. Geffin R, Martinez R, Perez R, Issac B, McCarthy M. Apolipoprotein E-dependent differences in innate immune responses of maturing human neuroepithelial progenitor cells exposed to HIV-1. J Neuroimmune Pharmacol. 2013;8(4):1010–26. doi:10.1007/s11481-013-9478-0.

    Article  PubMed  Google Scholar 

  98. Li Q, Smith AJ, Schacker TW, Carlis JV, Duan L, Reilly CS, et al. Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection. J Immunol. 2009;183(3):1975–82. doi:10.4049/jimmunol.0803222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Sedaghat AR, German J, Teslovich TM, Cofrancesco J Jr, Jie CC, Talbot CC Jr, et al. Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. J Virol. 2008;82(4):1870–83. doi:10.1128/JVI.02228-07.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Haller O, Staeheli P, Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie. 2007;89(6–7):812–8. doi:10.1016/j.biochi.2007.04.015.

    Article  CAS  PubMed  Google Scholar 

  101. Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA. 2006;103(5):1440–5. doi:10.1073/pnas.0510518103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Pincetic A, Kuang Z, Seo EJ, Leis J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol. 2010;84(9):4725–36. doi:10.1128/JVI.02478-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30. doi:10.1038/nature06553.

    Article  CAS  PubMed  Google Scholar 

  104. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 2009;139(3):499–511. doi:10.1016/j.cell.2009.08.039.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. McNatt MW, Zang T, Bieniasz PD. Vpu binds directly to tetherin and displaces it from nascent virions. PLoS Pathog. 2013;9(4):e1003299. doi:10.1371/journal.ppat.1003299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Lu J, Pan Q, Rong L, He W, Liu SL, Liang C. The IFITM proteins inhibit HIV-1 infection. J Virol. 2011;85(5):2126–37. doi:10.1128/JVI.01531-10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–5. doi:10.1038/nature09907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Chutiwitoonchai N, Hiyoshi M, Hiyoshi-Yoshidomi Y, Hashimoto M, Tokunaga K, Suzu S. Characteristics of IFITM, the newly identified IFN-inducible anti-HIV-1 family proteins. Microbes Infect. 2013;15(4):280–90. doi:10.1016/j.micinf.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  109. Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA, et al. Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol. 2003;162(6):2041–57. doi:10.1016/S0002-9440(10)64336-2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A, et al. Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol. 2004;157(1–2):163–75. doi:10.1016/j.jneuroim.2004.08.026.

    Article  CAS  PubMed  Google Scholar 

  111. Stephens EB, Jackson M, Cui L, Pacyniak E, Choudhuri R, Liverman CS, et al. Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuroAIDS. Neurosci Lett. 2006;410(2):94–9. doi:10.1016/j.neulet.2006.07.066.

    Article  CAS  PubMed  Google Scholar 

  112. Borjabad A, Morgello S, Chao W, Kim SY, Brooks AI, Murray J, et al. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. PLoS Pathog. 2011;7(9):e1002213. doi:10.1371/journal.ppat.1002213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Winkler JM, Chaudhuri AD, Fox HS. Translating the brain transcriptome in neuroAIDS: from non-human primates to humans. J Neuroimmune Pharmacol. 2012;7(2):372–9. doi:10.1007/s11481-012-9344-5.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The studies discussed in this review were supported by a generous grant from the Campbell Foundation (to MMc), and by the Department of Veteran Affairs Merit Review Program. Ricardo Martinez conducted the published and unpublished experiments described in this review, and provided a major contribution to the design and analysis of these experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheline McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geffin, R., McCarthy, M. Innate immune responses to HIV infection in the central nervous system. Immunol Res 57, 292–302 (2013). https://doi.org/10.1007/s12026-013-8445-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8445-4

Keywords

Navigation