Skip to main content

Advertisement

Log in

Alterations in macrophages and monocytes from tumor-bearing mice: evidence of local and systemic immune impairment

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Macrophages are cells of the innate immune system involved in critical activities such as maintaining tissue homeostasis and immune surveillance. Pro-inflammatory macrophages M1 are responsible for the inflammatory response, while M2 macrophages are associated with the immunosuppressive repair phase of tissue remodeling. Most cancers are associated with chronic inflammation, and a high number of macrophages in tumors have been associated with tumor progression. Much effort has been made in elucidating the mechanisms through which macrophages contribute to tumor development, yet much less is known about the initial mechanisms by which tumors modify macrophages. Our work has focused on identifying the mechanisms by which macrophages from tumor hosts are modified by tumors. We have shown that peritoneal macrophages are significantly altered in mice bearing advanced mammary tumors and are not M1 or M2 polarized, but express a mixture of both transcriptional programs. These macrophages are less differentiated and more prone to apoptosis, resulting in increased myelopoiesis as a compensation to regenerate macrophage progenitors in the marrow. Macrophages in the tumor microenvironment are also neither M1 nor M2 cells and through a display of different mechanisms are even more impaired than their peripheral counterparts. Finally, systemic blood monocytes, precursors of tissue macrophages, are also altered in tumor bearers and show a mixed program of pro- and anti-inflammatory functions. We conclude that there is evidence for local and systemic immune impairment in tumor hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol. 1998;64(3):275–90.

    CAS  PubMed  Google Scholar 

  2. Gordon S. The macrophage: past, present and future. Eur J Immunol. 2007;37(Suppl 1):S9–17. doi:10.1002/eji.200737638.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. doi:10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  4. Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 2008;15(2):243–50. doi:10.1038/sj.cdd.4402184.

    Article  CAS  PubMed  Google Scholar 

  5. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006;27(5):244–50. doi:10.1016/j.it.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  6. Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity. 2012;36(5):834–46. doi:10.1016/j.immuni.2012.03.010.

    Article  CAS  PubMed  Google Scholar 

  7. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood. 1999;94(1):127–38.

    CAS  PubMed  Google Scholar 

  8. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308(1):232–46. doi:10.1016/j.ydbio.2007.05.027.

    Article  CAS  PubMed  Google Scholar 

  9. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14(10):986–95. doi:10.1038/ni.2705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70. doi:10.1038/nri2528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res. 2012;53(1–3):11–24. doi:10.1007/s12026-012-8291-9.

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield TA, Best TM, Merrick MA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train. 2006;41(4):457–65.

    PubMed Central  PubMed  Google Scholar 

  13. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. doi:10.1038/nri2448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. doi:10.1172/JCI59643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175(1):342–9.

    Article  CAS  PubMed  Google Scholar 

  16. Duan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol. 2012;189(2):946–55. doi:10.4049/jimmunol.1200660.

    Article  CAS  PubMed  Google Scholar 

  17. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi:10.1016/j.immuni.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  18. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2013;. doi:10.1007/s10456-013-9381-6.

    PubMed  Google Scholar 

  19. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5. doi:10.1126/science.1194637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90. doi:10.1126/science.1219179.

    Article  CAS  PubMed  Google Scholar 

  21. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol. 2011;41(8):2155–64. doi:10.1002/eji.201141817.

    Article  CAS  PubMed  Google Scholar 

  22. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332(6035):1284–8. doi:10.1126/science.1204351.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35. doi:10.1038/nri978.

    Article  CAS  PubMed  Google Scholar 

  24. Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–12.

    Article  CAS  PubMed  Google Scholar 

  25. Schreiber RD. Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity. Contemp Top Immunobiol. 1984;13:171–98.

    CAS  PubMed  Google Scholar 

  26. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  27. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig. 2007;117(1):175–84. doi:10.1172/JCI29881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61. doi:10.1038/nri3088.

    Article  CAS  PubMed  Google Scholar 

  29. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  30. Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86(5):1105–9. doi:10.1189/jlb.0209073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509–13. doi:10.1189/jlb.0504272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7. doi:10.1016/j.ccr.2005.02.013.

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  34. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–8. doi:10.1016/j.gde.2007.12.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig. 2008;118(7):2516–25. doi:10.1172/JCI35073.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Nowarski R, Gagliani N, Huber S, Flavell R. Innate immune cells in inflammation and cancer. Cancer Immunol Res. 2013;1(2):77–84.

    Article  CAS  PubMed  Google Scholar 

  37. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8. doi:10.1038/nrc1256.

    Article  CAS  PubMed  Google Scholar 

  38. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196(3):254–65. doi:10.1002/path.1027.

    Article  CAS  PubMed  Google Scholar 

  39. Medrek C, Ponten F, Jirstrom K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306. doi:10.1186/1471-2407-12-306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ryder M, Ghossein RA, Ricarte-Filho JC, Knauf JA, Fagin JA. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer. 2008;15(4):1069–74. doi:10.1677/ERC-08-0036.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12. doi:10.1158/0008-5472.CAN-05-4005.

    Article  CAS  PubMed  Google Scholar 

  42. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. doi:10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  43. Medina D, DeOme KB. Response of hyperplastic alveolar nodule outgrowth-line D1 to mammary tumor virus, nodule-inducing virus, and prolonged hormonal stimulation acting singly and in combination. J Natl Cancer Inst. 1969;42(2):303–10.

    CAS  PubMed  Google Scholar 

  44. Torroella-Kouri M, Ma X, Perry G, Ivanova M, Cejas PJ, Owen JL, et al. Diminished expression of transcription factors nuclear factor kappaB and CCAAT/enhancer binding protein underlies a novel tumor evasion mechanism affecting macrophages of mammary tumor-bearing mice. Cancer Res. 2005;65(22):10578–84. doi:10.1158/0008-5472.CAN-05-0365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749–59. doi:10.1038/nri1703.

    Article  CAS  PubMed  Google Scholar 

  46. Torroella-Kouri M, Lopez DM. Mammary tumor-derived TGF-b1 impairs crucial innate immune responses in tumor hosts. J Immunol Immunopathol. 2003;5(1):31–8.

    Google Scholar 

  47. Torroella-Kouri M, Silvera R, Rodriguez D, Caso R, Shatry A, Opiela S, et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 2009;69(11):4800–9. doi:10.1158/0008-5472.CAN-08-3427.

    Article  CAS  PubMed  Google Scholar 

  48. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941–52. doi:10.1038/nri1498.

    Article  CAS  PubMed  Google Scholar 

  49. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Investig. 2007;117(5):1155–66. doi:10.1172/JCI31422.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi:10.1038/nri2506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13(10):739–52. doi:10.1038/nrc3581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ilkovitch D, Lopez DM. Urokinase-mediated recruitment of myeloid-derived suppressor cells and their suppressive mechanisms are blocked by MUC1/sec. Blood. 2009;113(19):4729–39. doi:10.1182/blood-2008-08-176438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Torroella-Kouri M, Keith JC, Ivanova M, Lopez DM. IL-11-induced reduction of C/EBP transcription factor binding may contribute to the IL-12 downregulation in tumor-bearing mice. Int J Oncol. 2003;22(2):439–48.

    CAS  PubMed  Google Scholar 

  54. Muscaritoli M, Bossola M, Battista Doglietto G, Rossi Fanelli F. The ubiquitin/proteasome system in cancer cachexia. New Jersey: A Modern Approach Springer-Verlag; 2006.

    Book  Google Scholar 

  55. Perry G, Iragavarapu-Charyulu V, Harhaj EW, Torroella-Kouri M. Role of the proteasome in the downregulation of transcription factors NFkappaB and C/EBP in macrophages from tumor hosts. Oncol Rep. 2010;23(3):875–81.

    CAS  PubMed  Google Scholar 

  56. Wang T. The 26S proteasome system in the signaling pathways of TGF-beta superfamily. Front Biosci. 2003;8:d1109–27.

    Article  CAS  PubMed  Google Scholar 

  57. Petrel TA, Brueggemeier RW. Increased proteasome-dependent degradation of estrogen receptor-alpha by TGF-beta1 in breast cancer cell lines. J Cell Biochem. 2003;88(1):181–90. doi:10.1002/jcb.10353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rodriguez D, Silvera R, Carrio R, Nadji M, Caso R, Rodriguez G, et al. Tumor microenvironment profoundly modifies functional status of macrophages: peritoneal and tumor-associated macrophages are two very different subpopulations. Cell Immunol. 2013;283(1–2):51–60. doi:10.1016/j.cellimm.2013.06.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA. 2009;106(35):14978–83. doi:10.1073/pnas.0809784106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 2006;66(23):11432–40. doi:10.1158/0008-5472.CAN-06-1867.

    Article  CAS  PubMed  Google Scholar 

  61. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22. doi:10.1182/blood-2005-01-0428.

    Article  CAS  PubMed  Google Scholar 

  62. Kusmartsev S, Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005;174(8):4880–91.

    Article  CAS  PubMed  Google Scholar 

  63. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell. 2009;15(2):114–23. doi:10.1016/j.ccr.2008.12.018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Terme M, Ullrich E, Aymeric L, Meinhardt K, Coudert JD, Desbois M, et al. Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells. Cancer Res. 2012;72(11):2757–67. doi:10.1158/0008-5472.CAN-11-3379.

    Article  CAS  PubMed  Google Scholar 

  65. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117. doi:10.1016/S0065-230X(10)07003-X.

    Article  CAS  PubMed  Google Scholar 

  66. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457–64. doi:10.1084/jem.20090207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50(5):980–9. doi:10.1016/j.jhep.2008.12.033.

    Article  CAS  PubMed  Google Scholar 

  68. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M, et al. In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc Natl Acad Sci USA. 2010;107(14):6430–5. doi:10.1073/pnas.0913683107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92. doi:10.1146/annurev.immunol.021908.132557.

    Article  CAS  PubMed  Google Scholar 

  70. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, et al. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008;86(5):398–408. doi:10.1038/icb.2008.19.

    Article  CAS  PubMed  Google Scholar 

  71. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  72. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61. doi:10.1126/science.1178331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82(2):244–52. doi:10.1189/jlb.0307191.

    Article  CAS  PubMed  Google Scholar 

  74. Yona S, Jung S. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol. 2010;17(1):53–9. doi:10.1097/MOH.0b013e3283324f80.

    Article  PubMed  Google Scholar 

  75. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211–26. doi:10.1016/j.ccr.2005.08.002.

    Article  PubMed  Google Scholar 

  76. Caso R, Silvera R, Carrio R, Iragavarapu-Charyulu V, Gonzalez-Perez RR, Torroella-Kouri M. Blood monocytes from mammary tumor-bearing mice: early targets of tumor-induced immune suppression? Int J Oncol. 2010;37(4):891–900.

    CAS  PubMed  Google Scholar 

  77. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728–39. doi:10.1158/0008-5472.CAN-09-4672.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank all members of my group, past and present, who have contributed to the work and ideas discussed in this manuscript. Special thanks to Risset Silvera and Giselle Perry who actively and significantly contributed to this research, as well as to Ozzie Perez, who prepared the included figure. Research has been supported by the National Institutes of Health Grants R21 CA153172 and KO1 CA101926 from MTK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Torroella-Kouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torroella-Kouri, M., Rodríguez, D. & Caso, R. Alterations in macrophages and monocytes from tumor-bearing mice: evidence of local and systemic immune impairment. Immunol Res 57, 86–98 (2013). https://doi.org/10.1007/s12026-013-8438-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8438-3

Keywords

Navigation