Skip to main content

Advertisement

Log in

The unique role of dietary l-arginine in the acceleration of peritoneal macrophage sensitivity to bacterial endotoxin

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

It is known that cells and organisms can indirectly “sense” changes in l-arginine availability via changes in the activity of various metabolic pathways. However, the mechanism(s) by which genes can be directly regulated by l-arginine in mammalian cells have not yet been elucidated. We investigated the effect of l-arginine in the in vivo model of peritoneal inflammation in mice and in vitro in RAW 264.7 macrophages. A detailed analysis of basic physiological functions and selected intracellular signaling cascades revealed that l-arginine is crucial for the acceleration of macrophage activation by bacterial lipopolysaccharide. l-arginine increased the production of reactive oxygen species, nitric oxide, release of Ca2+, as well as inducible nitric oxide synthase expression. Interestingly, the effect of l-arginine on macrophage activation was dependent on the phosphorylation of mitogen-activated protein kinases and activity of phospholipase C. In RAW 264.7 cells, l-arginine was shown to modulate the response of macrophages toward lipopolysaccharide via the activation of G-protein-coupled receptors. According to our data, we concluded that l-arginine availability plays a key role in the initiation of intracellular signaling pathways that trigger the lipopolysaccharide-induced inflammatory responses in murine macrophages. Although macrophages are partially stimulated in the absence of extracellular l-arginine, the presence of this amino acid significantly accelerates the sensitivity of macrophages to bacterial endotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2008;212:795–812.

    Article  Google Scholar 

  2. MacRae FL, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes. 2003;27:S35–40.

    Article  Google Scholar 

  3. Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocyte/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:23–8.

    Article  CAS  PubMed  Google Scholar 

  4. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    Article  CAS  PubMed  Google Scholar 

  5. Karin M, Liu ZG, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997;9:240–6.

    Article  CAS  PubMed  Google Scholar 

  6. El-Gayar S, Thuring-Nahler H, Pfeilschifter J, Rollinghoff M, Bogdan C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunol. 2004;171:4561–8.

    Google Scholar 

  7. Kleinert H, Pautz A, Punker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthese. Eur J Pharmacol. 2004;500:255–66.

    Article  CAS  PubMed  Google Scholar 

  8. Konig T, Bogdan C, Schleicher U. Translational repression of inducible NO synthase in macrophages by l-arginine depletion is not associated with an increased phosphorylation of eF2α. Immunobiology. 2009;214:822–7.

    Article  PubMed  Google Scholar 

  9. Morris SM. Arginine metabolism. Boundaries of our knowledge. J Nutr. 2007;137:1602S–9S.

    CAS  PubMed  Google Scholar 

  10. Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery. 1993;114:155–9.

    CAS  PubMed  Google Scholar 

  12. Barbul A, Sisto DA, Wasserkrug HL, Yoshimura NN, Efron G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery. 1981;90:244–51.

    CAS  PubMed  Google Scholar 

  13. Mieulet V, Yan L, Choisy C, Sully K, Procter J, Kouroumalis A, Krywawych S, Pende M, Ley SC, Mainard C, Lamb RF. TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to arginine availability. Sci Signal. 2010;3:ra61.

    Article  PubMed  Google Scholar 

  14. Viackova D, Pekarova M, Crhak T, Bucsaiova M, Matiasovic J, Lojek A, Kubala L. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin. Immunobiology. 2010;216:457–65.

    Article  PubMed  Google Scholar 

  15. Grasemann H, Schwiertz R, Grasemann C, Vester U, Racke K, Ratjen F. Decreased systemic bioavailability of l-arginine in patients with cystic fibrosis. Respir Res. 2006;9:87.

    Article  Google Scholar 

  16. Schwedhelm E, Xanthakis V, Maas R, Sullivan LM, Schulze F, Riedere U, Benndorf RA, Boger RH, Vasan RS. Asymmetric dimethylarginine reference intervals determined with liquid chromatography-tandem mass spectrometry: results from the Framingham offspring cohort. Clin Chem. 2009;55:1539–45.

    Article  CAS  PubMed  Google Scholar 

  17. Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L. New role for l-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. ScientificWorldJournal. 2011;11:2443–57.

    Article  CAS  PubMed  Google Scholar 

  18. Macickova T, Pecivova J, Nosal R, Lojek A, Pekarova M, Cupanikova D. Inhibition of superoxide generation and myeloperoxidase release by carvedilol after receptor and nonreceptor stimulation of human neutrophils. Neuro Endocrinol Lett. 2008;29:790–3.

    CAS  PubMed  Google Scholar 

  19. Pekarova M, Kralova J, Kubala L, Ciz M, Papezikova I, Macickova T, Pecivova J, Nosal R, Lojek A. Carvedilol and adrenergic agonists suppress the lipopolysaccharide-induced NO production in RAW 264.7 macrophages via the adrenergic receptors. J Physiol Pharmacol. 2009;60:143–50.

    CAS  PubMed  Google Scholar 

  20. Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression. Biochem J. 2000;351:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.

    CAS  PubMed  Google Scholar 

  22. McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S. Synthesis of nitric oxide from l-arginine by neutrophils. Biochem J. 1989;261:293–6.

    CAS  PubMed  Google Scholar 

  23. Patel JD, Krupka T, Anderson JM. iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res. 2007;80A:381–90.

    Article  CAS  Google Scholar 

  24. Lewis B, Langkamp-Henken B. Arginine enhances in vivo immune responses in young, adult and aged mice. J Nutr. 2000;130:1827–30.

    CAS  PubMed  Google Scholar 

  25. Yeh CL, Yeh SL, Lin MT, Chen WJ. Effects of arginine-enriched total parenteral nutrition on inflammatory-related mediator and T-cell population in septic rats. Nutrition. 2002;18:631–5.

    Article  CAS  PubMed  Google Scholar 

  26. Shang HF, Wang YY, Lai YN, Chiu WC, Yeh SL. Effect of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr. 2004;23:561–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Rad Biol Med. 2007;42:1290–302.

    Article  CAS  PubMed  Google Scholar 

  28. Bogle RG, MacAllister RJ, Whitley GS, Vallance P. Induction of NG-monomethyl-l-arginine uptake: a mechanism for differential inhibition of NO synthase? Am J Physiol. 1995;269:C750–6.

    CAS  PubMed  Google Scholar 

  29. Bronte V, Zanovello P. Regulation of immune responses by arginine metabolism. Immunology. 2005;5:641–54.

    CAS  PubMed  Google Scholar 

  30. Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A. Macrophages require distinct arginine catabolism and transport system for proliferation and for activation. Eur J Immunol. 2006;26:1516–26.

    Article  Google Scholar 

  31. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J. 2003;373:1–18.

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Ma JYC, Barger MW, Ma JKH. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res. 2002;19:825–31.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2*. J Biol Chem. 2001;276:15881–5.

    Article  CAS  PubMed  Google Scholar 

  34. Wu G, Brosnan JT. Macrophages can convert citrulline into arginine. Biochem J. 1992;281:45–8.

    CAS  PubMed  Google Scholar 

  35. Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide sythase, explains the “l-arginine paradox” and act as a novel cardiovascular risk factor. J Nutr. 2004;134:2842S–7S.

    PubMed  Google Scholar 

  36. Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA. 2006;100:4843–8.

    Article  Google Scholar 

  37. Kagemann G, Sies H, Schnorr O. Limited availability of l-arginine increases DNA-binding activity of NF-kappaB and contributes to regulation of iNOS expression. J Mol Med. 2007;85:723–32.

    Article  CAS  PubMed  Google Scholar 

  38. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulated amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  CAS  PubMed  Google Scholar 

  39. Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P. Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun. 2004;313:447–52.

    Article  CAS  PubMed  Google Scholar 

  40. Sattlegger E, Hinnebusch AG. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starvated cells. EMBO J. 2000;19:6622–33.

    Article  CAS  PubMed  Google Scholar 

  41. Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72:1493–505.

    Article  CAS  PubMed  Google Scholar 

  42. Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998;851:139–46.

    Article  CAS  PubMed  Google Scholar 

  43. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13.

    Article  CAS  PubMed  Google Scholar 

  44. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156:4457–65.

    CAS  PubMed  Google Scholar 

  45. Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ. Structure and functions of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci. 1999;868:667–76.

    Article  CAS  PubMed  Google Scholar 

  46. Christiansen B, Hansen KB, Wellendorph P, Brauner-Osborne H. Pharmacological characterization of mouse GPRC6A, an L-α-amino-acid receptor modulated by divalent cations. Br J Pharmacol. 2007;150:798–807.

    Article  CAS  PubMed  Google Scholar 

  47. Matthews JC, Anderson KJ. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr Opin Clin Nutr Metab Care. 2002;5:77–84.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature. 2002;416:199–202.

    Article  CAS  PubMed  Google Scholar 

  49. Joshi MS, Ferguson B, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci USA. 2007;104:9982–7.

    Article  CAS  PubMed  Google Scholar 

  50. Vergarajauregui S, San Migul A, Puertollano R. Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic. 2006;7:686–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lenka Vystrcilova for excellent technical assistance, BioScience Writers and Jana Vaculikova for their expert grammar analysis. This work was supported by the Czech Science Foundation (524/08/1753), Masaryk University in Brno (MUNI/C/0886/2010), and by Academy of Science Czech Republic (M200041208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Pekarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekarova, M., Kubala, L., Martiskova, H. et al. The unique role of dietary l-arginine in the acceleration of peritoneal macrophage sensitivity to bacterial endotoxin. Immunol Res 56, 73–84 (2013). https://doi.org/10.1007/s12026-012-8379-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8379-2

Keywords

Navigation