Skip to main content

Advertisement

Log in

Mapping I-Ag7 restricted epitopes in murine G6PC2

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

G6PC2, also known as islet-specific glucose 6-phosphatase catalytic subunit-related protein (IGRP), is a major target of autoreactive CD8+ T cells in both diabetic human subjects and the non-obese diabetic (NOD) mouse. However, in contrast to the abundant literature regarding the CD8+ response to this antigen, much less is known about the potential involvement of IGRP-reactive CD4+ T cells in diabetogenesis. The single previous study that examined this question in NOD mice was based upon a candidate epitope approach and identified three I-Ag7-restricted epitopes that each elicited spontaneous responses in these animals. However, given the known inaccuracies of MHC class II epitope prediction algorithms, we hypothesized that additional specificities might also be targeted. To address this issue, we immunized NOD mice with membranes from insect cells overexpressing full-length recombinant mouse IGRP and measured recall responses of purified CD4+ T cells using a library of overlapping peptides encompassing the entire 355-aa primary sequence. Nine peptides representing 8 epitopes gave recall responses, only 1 of which corresponded to any of the previously reported sequences. In each case proliferation was blocked by a monoclonal antibody to I-Ag7, but not the appropriate isotype control. Consistent with a role in diabetogenesis, proliferative responses to 4 of the 9 peptides (3 epitopes) were also detected in CD4+ T cells purified from the pancreatic draining lymph nodes of pre-diabetic female animals, but not from peripheral lymph nodes or spleens of the same animals. Intriguingly, one of the newly identified spontaneously reactive epitopes (P8 [IGRP55–72]) is highly conserved between mice and man, suggesting that it might also be a target of HLA-DQ8-restricted T cells in diabetic human subjects, an hypothesis that we are currently testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  PubMed  CAS  Google Scholar 

  2. Libman I, Songer T, LaPorte R. How many people in the U.S. have IDDM? Diabetes Care. 1993;16:841–2.

    PubMed  CAS  Google Scholar 

  3. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373:2027–33.

    Article  PubMed  Google Scholar 

  4. Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence: what can we learn from epidemiology? Pediatr Diabetes. 2007;8(Suppl 6):6–14.

    Article  PubMed  Google Scholar 

  5. Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32:457–67.

    Article  PubMed  CAS  Google Scholar 

  6. Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, et al. How does type 1 diabetes develop?: the notion of homicide or beta-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  PubMed  CAS  Google Scholar 

  7. Roep BO. The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. Diabetologia. 2003;46:305–21.

    PubMed  CAS  Google Scholar 

  8. van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.

    Article  PubMed  Google Scholar 

  9. Kaufman A, Herold KC. Anti-CD3 mAbs for treatment of type 1 diabetes. Diabetes Metab Res Rev. 2009;25:302–6.

    Article  PubMed  CAS  Google Scholar 

  10. Chatenoud L. Immune therapy for type 1 diabetes mellitus: what is unique about anti-CD3 antibodies? Nat Rev Endocrinol. 2010;6:149–57.

    Article  PubMed  CAS  Google Scholar 

  11. Peakman M, von Herrath M. Antigen-specific immunotherapy for type 1 diabetes: maximizing the potential. Diabetes. 2010;59:2087–93.

    Article  PubMed  CAS  Google Scholar 

  12. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity. 2005;23:115–26.

    Article  PubMed  CAS  Google Scholar 

  13. Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220–3.

    Article  PubMed  CAS  Google Scholar 

  14. von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol. 2007;7:988–94.

    Article  Google Scholar 

  15. Cobbold SP, Adams E, Nolan KF, Regateiro FS, Waldmann H. Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev. 2010;236:203–18.

    Article  PubMed  CAS  Google Scholar 

  16. DiLorenzo TP. Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes Metab Res Rev. 2011;27:778–83.

    Article  PubMed  CAS  Google Scholar 

  17. Shieh JJ, Pan CJ, Mansfield BC, Chou JY. The islet-specific glucose-6-phosphatase-related protein, implicated in diabetes, is a glycoprotein embedded in the endoplasmic reticulum membrane. FEBS Lett. 2004;562:160–4.

    Article  PubMed  CAS  Google Scholar 

  18. Arden SD, Zahn T, Steegers S, Webb S, Bergman B, O’Brien RM, et al. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes. 1999;48:531–42.

    Article  PubMed  CAS  Google Scholar 

  19. Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, et al. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988;85:9037–41.

    Article  PubMed  CAS  Google Scholar 

  20. Neophytou PI, Muir EM, Hutton JC. A subtractive cloning approach to the identification of mRNAs specifically expressed in pancreatic beta-cells. Diabetes. 1996;45:127–33.

    Article  PubMed  CAS  Google Scholar 

  21. Bouatia-Naji N, Rocheleau G, Van Lommel L, Lemaire K, Schuit F, Cavalcanti-Proenca C, et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science. 2008;320:1085–8.

    Article  PubMed  CAS  Google Scholar 

  22. Dos Santos C, Bougneres P, Fradin D. A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC2 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes. 2009;58:489–92.

    Article  PubMed  Google Scholar 

  23. Wang Y, Martin CC, Oeser JK, Sarkar S, McGuinness OP, Hutton JC, et al. Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype. Diabetologia. 2007;50:774–8.

    Article  PubMed  CAS  Google Scholar 

  24. Heni M, Ketterer C, Hart LM, Ranta F, van Haeften TW, Eekhoff EM, et al. The impact of genetic variation in the G6PC2 gene on insulin secretion depends on glycemia. J Clin Endocrinol Metab. 2010;95:E479–84.

    Article  PubMed  CAS  Google Scholar 

  25. Hu C, Zhang R, Wang C, Yu W, Lu J, Ma X, et al. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion. PLoS ONE. 2010;5:e11761.

    Article  PubMed  Google Scholar 

  26. Nagata M, Santamaria P, Kawamura T, Utsugi T, Yoon JW. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J Immunol. 1994;152:2042–50.

    PubMed  CAS  Google Scholar 

  27. Santamaria P, Utsugi T, Park BJ, Averill N, Kawazu S, Yoon JW. Beta-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor alpha-chain CDR3 sequences. J Immunol. 1995;154:2494–503.

    PubMed  CAS  Google Scholar 

  28. Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, Caldwell JA, et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci U S A. 2003;100:8384–8.

    Article  PubMed  CAS  Google Scholar 

  29. Anderson B, Park BJ, Verdaguer J, Amrani A, Santamaria P. Prevalent CD8(+) T cell response against one peptide/MHC complex in autoimmune diabetes. Proc Natl Acad Sci U S A. 1999;96:9311–6.

    Article  PubMed  CAS  Google Scholar 

  30. Han B, Serra P, Amrani A, Yamanouchi J, Maree AF, Edelstein-Keshet L, et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med. 2005;11:645–52.

    Article  PubMed  CAS  Google Scholar 

  31. Oeser JK, Parekh VV, Wang Y, Jegadeesh NK, Sarkar SA, Wong R, et al. Deletion of the G6pc2 gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein does not affect the progression or incidence of type 1 diabetes in NOD/ShiLtJ mice. Diabetes. 2011;60:2922–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ouyang Q, Standifer NE, Qin H, Gottlieb P, Verchere CB, Nepom GT, et al. Recognition of HLA class I-restricted beta-cell epitopes in type 1 diabetes. Diabetes. 2006;55:3068–74.

    Article  PubMed  CAS  Google Scholar 

  33. Standifer NE, Ouyang Q, Panagiotopoulos C, Verchere CB, Tan R, Greenbaum CJ, et al. Identification of Novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes. 2006;55:3061–7.

    Article  PubMed  CAS  Google Scholar 

  34. Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes. 2007;56:613–21.

    Article  PubMed  CAS  Google Scholar 

  35. Jarchum I, Nichol L, Trucco M, Santamaria P, DiLorenzo TP. Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol. 2008;127:359–65.

    Article  PubMed  CAS  Google Scholar 

  36. Martinuzzi E, Novelli G, Scotto M, Blancou P, Bach JM, Chaillous L, et al. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes. 2008;57:1312–20.

    Article  PubMed  CAS  Google Scholar 

  37. Mukherjee R, Wagar D, Stephens TA, Lee-Chan E, Singh B. Identification of CD4+ T cell-specific epitopes of islet-specific glucose-6-phosphatase catalytic subunit-related protein: a novel beta cell autoantigen in type 1 diabetes. J Immunol. 2005;174:5306–15.

    PubMed  CAS  Google Scholar 

  38. Yang J, Danke NA, Berger D, Reichstetter S, Reijonen H, Greenbaum C, et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J Immunol. 2006;176:2781–9.

    PubMed  CAS  Google Scholar 

  39. Nielsen M, Lund O, Buus S, Lundegaard C. MHC class II epitope predictive algorithms. Immunology. 2010;130:319–28.

    Article  PubMed  CAS  Google Scholar 

  40. Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 1972;27:353–65.

    PubMed  CAS  Google Scholar 

  41. Bunch TA, Grinblat Y, Goldstein LS. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 1988;16:1043–61.

    Article  PubMed  CAS  Google Scholar 

  42. Kelemen K, Gottlieb PA, Putnam AL, Davidson HW, Wegmann DR, Hutton JC. HLA-DQ8-associated T cell responses to the diabetes autoantigen phogrin (IA-2 beta) in human prediabetes. J Immunol. 2004;172:3955–62.

    PubMed  CAS  Google Scholar 

  43. Oi VT, Jones PP, Goding JW, Herzenberg LA. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–20.

    PubMed  CAS  Google Scholar 

  44. Shameli A, Yamanouchi J, Thiessen S, Santamaria P. Endoplasmic reticulum stress caused by overexpression of islet-specific glucose-6-phosphatase catalytic subunit-related protein in pancreatic Beta-cells. Rev Diabet Stud. 2007;4:25–32.

    Article  PubMed  Google Scholar 

  45. Boitard C, Bendelac A, Richard MF, Carnaud C, Bach JF. Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells. Proc Natl Acad Sci U S A. 1988;85:9719–23.

    Article  PubMed  CAS  Google Scholar 

  46. Burtles SS, Trembleau S, Drexler K, Hurtenbach U. Absence of T cell tolerance to pancreatic islet cells. J Immunol. 1992;149:2185–93.

    PubMed  CAS  Google Scholar 

  47. Bendelac A, Carnaud C, Boitard C, Bach JF. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987;166:823–32.

    Article  PubMed  CAS  Google Scholar 

  48. Wicker LS, Miller BJ, Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986;35:855–60.

    Article  PubMed  CAS  Google Scholar 

  49. Li R, Perez N, Karumuthil-Melethil S, Vasu C. Bone marrow is a preferential homing site for autoreactive T-cells in type 1 diabetes. Diabetes. 2007;56:2251–9.

    Article  PubMed  CAS  Google Scholar 

  50. Stratmann T, Apostolopoulos V, Mallet-Designe V, Corper AL, Scott CA, Wilson IA, et al. The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J Immunol. 2000;165:3214–25.

    PubMed  CAS  Google Scholar 

  51. Gowthaman U, Agrewala JN. In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J Proteome Res. 2008;7:154–63.

    Article  PubMed  CAS  Google Scholar 

  52. Moudgil KD, Sercarz EE, Grewal IS. Modulation of the immunogenicity of antigenic determinants by their flanking residues. Immunol Today. 1998;19:217–20.

    Article  PubMed  CAS  Google Scholar 

  53. O’Brien C, Flower DR, Feighery C. Peptide length significantly influences in vitro affinity for MHC class II molecules. Immunome Res. 2008;4:6.

    Article  PubMed  Google Scholar 

  54. Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue ER. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol. 1996;156:450–8.

    PubMed  CAS  Google Scholar 

  55. Standifer NE, Burwell EA, Gersuk VH, Greenbaum CJ, Nepom GT. Changes in autoreactive T cell avidity during type 1 diabetes development. Clin Immunol. 2009;132:312–20.

    Article  PubMed  CAS  Google Scholar 

  56. Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature. 2000;406:739–42.

    Article  PubMed  CAS  Google Scholar 

  57. Delong T, Baker RL, Reisdorph N, Reisdorph R, Powell RL, Armstrong M, et al. Islet amyloid polypeptide is a target antigen for diabetogenic CD4+ T cells. Diabetes. 2011;60:2325–30.

    Article  PubMed  CAS  Google Scholar 

  58. Chang KY, Suri A, Unanue ER. Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm. Proteomics. 2007;7:367–77.

    Article  PubMed  CAS  Google Scholar 

  59. Suri A, Walters JJ, Gross ML, Unanue ER. Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest. 2005;115:2268–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 DK052068 (to JCH and HWD), the University of Colorado Health Sciences Center Diabetes and Endocrinology Research Center (P30 DK57516), and American Diabetes Association research grant 1-04-RA-44 (to JCH). Tao Yang gratefully acknowledges support from an American Diabetes Association mentored post-doctoral fellowship (7-04-MN-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard W. Davidson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Hohenstein, A.C., Lee, C.E. et al. Mapping I-Ag7 restricted epitopes in murine G6PC2. Immunol Res 55, 91–99 (2013). https://doi.org/10.1007/s12026-012-8368-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8368-5

Keywords

Navigation