Skip to main content
Log in

Regulation of the immune response by soybean isoflavones

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H. Soy isoflavones: a safety review. Nutr Rev. 2003;61(1):1–33.

    PubMed  Google Scholar 

  2. Hendrich S. Bioavailability of isoflavones. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1–2):203–10.

    CAS  PubMed  Google Scholar 

  3. Nagata C. Ecological study of the association between soy product intake and mortality from cancer and heart disease in Japan. Int J Epidemiol. 2000;29(5):832–6.

    CAS  PubMed  Google Scholar 

  4. Zhang X, Shu XO, Gao YT, Yang G, Li Q, Li H, Jin F, Zheng W. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr. 2003;133(9):2874–8.

    CAS  PubMed  Google Scholar 

  5. Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev. 2007;16(3):538–45.

    CAS  PubMed  Google Scholar 

  6. Wu AH, Ziegler RG, Horn-Ross PL, Nomura AM, West DW, Kolonel LN, Rosenthal JF, Hoover RN, Pike MC. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev. 1996;5(11):901–6.

    CAS  PubMed  Google Scholar 

  7. Barnes S, Prasain J, D'Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janle EM, Weaver CM. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Function. 2011;2(5):235–44.

    CAS  PubMed  Google Scholar 

  8. Barnes S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol. 2010;8(1):89–98.

    CAS  PubMed  Google Scholar 

  9. Murphy PA, Barua K, Hauck CC. Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1–2):129–38.

    CAS  PubMed  Google Scholar 

  10. Wang H, Murphy PA. Isoflavone content in commercial soybean foods. J Agric Food Chem. 1994;42(8):1666–73.

    CAS  Google Scholar 

  11. Ye Z, Renouf M, Lee SO, Hauck CC, Murphy PA, Hendrich S. High urinary isoflavone excretion phenotype decreases plasma cholesterol in golden Syrian hamsters fed soy protein. J Nutr. 2006;136(11):2773–8.

    CAS  PubMed  Google Scholar 

  12. Lee SO, Renouf M, Ye Z, Murphy PA, Hendrich S. Isoflavone glycitein diminished plasma cholesterol in female golden Syrian hamsters. J Agric Food Chem. 2007;55(26):11063–7.

    CAS  PubMed  Google Scholar 

  13. Setchell KDR, Clerici C. Equol: history, chemistry, and formation. J Nutr. 2010;140(7):1355S–62S.

    CAS  PubMed  Google Scholar 

  14. Kang J, Badger TM, Ronis MJJ, Wu X. Non-isoflavone phytochemicals in soy and their health effects. J Agric Food Chem. 2010;58(14):8119–33.

    CAS  PubMed  Google Scholar 

  15. Beck V, Rohr U, Jungbauer A. Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol. 2005;94(5):499–518.

    CAS  PubMed  Google Scholar 

  16. Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J Altern Complement Med. 1997;3(1):7–12.

    CAS  PubMed  Google Scholar 

  17. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137(5):1244–52.

    CAS  PubMed  Google Scholar 

  18. Xiao CW. Health effects of soy protein and isoflavones in humans. J Nutr. 2008;138(6):1244S–9S.

    CAS  PubMed  Google Scholar 

  19. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130(9):2243–50.

    CAS  PubMed  Google Scholar 

  20. Allred CD, Ju YH, Allred KF, Chang J, Helferich WG. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis. 2001;22(10):1667–73.

    CAS  PubMed  Google Scholar 

  21. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–70.

    CAS  PubMed  Google Scholar 

  22. Xu X, Harris KS, Wang H-J, Murphy PA, Hendrich S. Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr. 1995;125(9):2307–15.

    CAS  PubMed  Google Scholar 

  23. Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr. 2001;131(4 Suppl):1362S–75S.

    CAS  PubMed  Google Scholar 

  24. Duncan AM, Merz-Demlow BE, Xu X, Phipps WR, Kurzer MS. Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2000;9(6):581–6.

    CAS  PubMed  Google Scholar 

  25. Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–84.

    CAS  PubMed  Google Scholar 

  26. Akaza H, Miyanaga N, Takashima N, Naito S, Hirao Y, Tsukamoto T, Fujioka T, Mori M, Kim W-J, Song JM, Pantuck AJ. Comparisons of percent Equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol. 2004;34(2):86–9.

    PubMed  Google Scholar 

  27. Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ. Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem. 1996;7(12):664–9.

    CAS  Google Scholar 

  28. Sakai T, Kogiso M. Soy isoflavones and immunity. J Med Invest. 2008;55(3–4):167–73.

    PubMed  Google Scholar 

  29. Cooke PS, Selvaraj V, Yellayi S. Genistein, estrogen receptors, and the acquired immune response. J Nutr. 2006;136(3):704–8.

    CAS  PubMed  Google Scholar 

  30. Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA. Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J Nutr. 2002;132(10):3168–71.

    CAS  PubMed  Google Scholar 

  31. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997;350(9070):23–7.

    CAS  PubMed  Google Scholar 

  32. Setchell KD, Brown NM, Zhao X, Lindley SL, Heubi JE, King EC, Messina MJ. Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr. 2011;94(5):1284–94.

    CAS  PubMed  Google Scholar 

  33. Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr. 2000;130(8):1963–70.

    CAS  PubMed  Google Scholar 

  34. Rimbach G, De Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane AM, Turner R, VafeiAdou K, Weinberg PD. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 2003;33(9):913–25.

    CAS  PubMed  Google Scholar 

  35. Rotondo S, Krauze-Brzosko K, Manarini S, Martelli N, Pecce R, Evangelista V, Benedetta Donati M, Cerletti C. Inhibition by soya isoflavones of human polymorphonuclear leukocyte function: possible relevance for the beneficial effects of soya intake. Br J Nutr 2008;99(2):240–7.

    Google Scholar 

  36. Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med. 1995;208(1):124–30.

    CAS  PubMed  Google Scholar 

  37. Djuric Z, Chen G, Doerge DR, Heilbrun LK, Kucuk O. Effect of soy isoflavone supplementation on markers of oxidative stress in men and women. Cancer Lett. 2001;172(1):1–6.

    CAS  PubMed  Google Scholar 

  38. Wiseman H, O'Reilly JD, Adlercreutz H, Mallet AI, Bowey EA, Rowland IR, Sanders TA. Isoflavone phytoestrogens consumed in soy decrease F(2)-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr. 2000;72(2):395–400.

    CAS  PubMed  Google Scholar 

  39. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262(12):5592–5.

    CAS  PubMed  Google Scholar 

  40. Akiyama T, Ogawara H, Tony H, Bartholomew MS. Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:362–70.

    CAS  PubMed  Google Scholar 

  41. Casagrande F, Darbon J-M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 2001;61(10):1205–15.

    CAS  PubMed  Google Scholar 

  42. Dijsselbloem N, Vanden Berghe W, De Naeyer A, Haegeman G. Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections: multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol 2004;68(6):1171–85.

    Google Scholar 

  43. Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH. Inactivation of NF-[kappa]B by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene. 2003;22(30):4702–9.

    CAS  PubMed  Google Scholar 

  44. Salti GI, Grewal S, Mehta RR, Das Gupta TK, Boddie Jr AW, Constantinou AI. Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer. 2000;36(6):796–802.

    Google Scholar 

  45. Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 1989;49(18):5111–7.

    CAS  PubMed  Google Scholar 

  46. Nichols MR, Morimoto BH. Differential inhibition of multiple cAMP phosphodiesterase isozymes by isoflavones and tyrphostins. Mol Pharm. 2000;57(4):738–45.

    CAS  Google Scholar 

  47. Taylor CK, Levy RM, Elliott JC, Burnett BP. The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev. 2009;67(7):398–415.

    PubMed  Google Scholar 

  48. Burke-Gaffney A, Hellewell PG. Tumour necrosis factor-alpha-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: modulation by tyrosine kinase inhibitors. Br J Pharmacol. 1996;119(6):1149–58.

    CAS  PubMed  Google Scholar 

  49. Nagata M, Sedgwick JB, Busse WW. Synergistic activation of eosinophil superoxide anion generation by VCAM-1 and GM-CSF. Involvement of tyrosine kinase and protein kinase C. Int Arch Allergy Immunol. 1997;114(Suppl 1):78–80.

    CAS  PubMed  Google Scholar 

  50. Weber C. Involvement of tyrosine phosphorylation in endothelial adhesion molecule induction. Immunol Res. 1996;15(1):30–7.

    CAS  PubMed  Google Scholar 

  51. Tanabe J, Watanabe M, Kondoh S, Mue S, Ohuchi K. Possible roles of protein kinases in neutrophil chemotactic factor production by leucocytes in allergic inflammation in rats. Br J Pharmacol. 1994;113(4):1480–6.

    CAS  PubMed  Google Scholar 

  52. Corbett JA, Kwon G, Marino MH, Rodi CP, Sullivan PM, Turk J, McDaniel ML. Tyrosine kinase inhibitors prevent cytokine-induced expression of iNOS and COX-2 by human islets. Am J Physiol. 1996;270(6 Pt 1):C1581–7.

    CAS  PubMed  Google Scholar 

  53. Barry H. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476(2):107–12.

    Google Scholar 

  54. Rickard DJ, Monroe DG, Ruesink TJ, Khosla S, Riggs BL, Spelsberg TC. Phytoestrogen genistein acts as an estrogen agonist on human osteoblastic cells through estrogen receptors alpha and beta. J Cell Biochem. 2003;89(3):633–46.

    CAS  PubMed  Google Scholar 

  55. Gameiro CM, Romao F, Castelo-Branco C. Menopause and aging: changes in the immune system—a review. Maturitas. 2010;67(4):316–20.

    CAS  PubMed  Google Scholar 

  56. Kogiso M, Sakai T, Mitsuya K, Komatsu T, Yamamoto S. Genistein suppresses antigen-specific immune responses through competition with 17[beta]-estradiol for estrogen receptors in ovalbumin-immunized BALB/c mice. Nutrition. 2006;22(7–8):802–9.

    CAS  PubMed  Google Scholar 

  57. Badger TM, Gilchrist JM, Pivik RT, Andres A, Shankar K, Chen J-R, Ronis MJ. The health implications of soy infant formula. Am J Clin Nutr. 2009;89(5):1668S–72S.

    CAS  PubMed  Google Scholar 

  58. Vandenplas Y, De Greef E, Devreker T, Hauser B. Soy infant formula: is it that bad? Acta Paediatr. 2011;100(2):162–6.

    PubMed  Google Scholar 

  59. Merritt RJ, Jenks BH. Safety of soy-based infant formulas containing isoflavones: the clinical evidence. J Nutr. 2004;134(5):1220S–4S.

    PubMed  Google Scholar 

  60. Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, Stallings VA, Drulis JM, Nelson SE, Hanson SA. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA. 2001;286(7):807–14.

    CAS  PubMed  Google Scholar 

  61. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.

    CAS  PubMed  Google Scholar 

  62. Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem. 2011;22(5):401–8.

    CAS  PubMed  Google Scholar 

  63. Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368(Pt 2):471–81.

    CAS  PubMed  Google Scholar 

  64. Atkinson KJ, Rao RK. Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol. 2001;280(6):G1280–8.

    CAS  PubMed  Google Scholar 

  65. Sheth P, Seth A, Atkinson KJ, Gheyi T, Kale G, Giorgianni F, Desiderio DM, Li C, Naren A, Rao R. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J. 2007;402(2):291–300.

    CAS  PubMed  Google Scholar 

  66. Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS. Soy formula and isoflavones and the developing intestine. Nutr Rev. 2009;67(Suppl 2):S192–200.

    PubMed  Google Scholar 

  67. Wells CL, Jechorek RP, Kinneberg KM, Debol SM, Erlandsen SL. The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes. J Nutr. 1999;129(3):634–40.

    CAS  PubMed  Google Scholar 

  68. Satsu H, Hyun JS, Shin HS, Shimizu M. Suppressive effect of an isoflavone fraction on tumor necrosis factor-alpha-induced interleukin-8 production in human intestinal epithelial Caco-2 cells. J Nutr Sci Vitaminol (Tokyo). 2009;55(5):442–6.

    CAS  Google Scholar 

  69. Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997;185(3):461–9.

    CAS  PubMed  Google Scholar 

  70. Dodge IL, Carr MW, Cernadas M, Brenner MB. IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J Immunol. 2003;170(9):4457–64.

    CAS  PubMed  Google Scholar 

  71. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101.

    CAS  PubMed  Google Scholar 

  72. Kovats S, Carreras E. Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell Immunol. 2008;252(1–2):81–90.

    CAS  PubMed  Google Scholar 

  73. Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine J-C, Goldman M, Haegeman G, Berghe WV. A critical role for p53 in the control of NF-{kappa}B-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. J Immunol. 2007;178(8):5048–57.

    CAS  PubMed  Google Scholar 

  74. Beavers KM, Jonnalagadda SS, Messina MJ. Soy consumption, adhesion molecules, and pro-inflammatory cytokines: a brief review of the literature. Nutr Rev. 2009;67(4):213–21.

    PubMed  Google Scholar 

  75. Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA. Signaling events following chemokine receptor ligation in human dendritic cells at different developmental stages. Int Immunol. 2001;13(2):167–79.

    CAS  PubMed  Google Scholar 

  76. Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol 2011;128(6):1242–50. e1241.

    Google Scholar 

  77. Yum MK, Jung MY, Cho D, Kim TS. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol Appl Pharmacol. 2011;257(2):174–81.

    CAS  PubMed  Google Scholar 

  78. Atluru D, Jackson TM, Atluru S. Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin Immunol Immunopathol. 1991;59(3):379–87.

    CAS  PubMed  Google Scholar 

  79. Nishio K, Miura K, Ohira T, Heike Y, Saijo N. Genistein, a tyrosine kinase inhibitor, decreased the affinity of p56(lck) to β-chain of interleukin-2 receptor in human natural killer (NK)-rich cells and decreased NK-mediated cytotoxicity. Proc Soc Exp Biol Med. 1994;207(2):227–33.

    CAS  PubMed  Google Scholar 

  80. Gredel S, Grad C, Rechkemmer G, Watzl B. Phytoestrogens and phytoestrogen metabolites differentially modulate immune parameters in human leukocytes. Food Chem Toxicol. 2008;46(12):3691–6.

    CAS  PubMed  Google Scholar 

  81. Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr. 1999;129(2):399–405.

    CAS  PubMed  Google Scholar 

  82. Henderson TA, Saunders PTK, Moffett-King A, Groome NP, Critchley HOD. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab. 2003;88(1):440–9.

    CAS  PubMed  Google Scholar 

  83. Hohman RJ, Dreskin SC. Measuring degranulation of mast cells. Curr Protoc Immunol 2001;Chapter 7:Unit 7, 26.

    Google Scholar 

  84. Marshall T, Shult P, Busse WW. Release of lysosomal enzyme beta-glucuronidase from isolated human eosinophils. J Allergy Clin Immunol. 1988;82(4):550–5.

    CAS  PubMed  Google Scholar 

  85. de Boer M, Roos D. Metabolic comparison between basophils and other leukocytes from human blood. J Immunol. 1986;136(9):3447–54.

    PubMed  Google Scholar 

  86. Schwartz LB, Austen KF. Enzymes of the mast cell granule. J Invest Dermatol. 1980;74(5):349–53.

    CAS  PubMed  Google Scholar 

  87. Tamura S, Yoshihira K, Tokumaru M, Zisheng X, Murakami N. Inhibitors for expression of IgE receptor on human mast cell from Puerariae Flos. Bioorganic Medicinal Chem Lett. 2011;20(13):3872–5.

    Google Scholar 

  88. Tedeschi A, Lorini M, Galbiati S, Gibelli S, Miadonna A. Inhibition of basophil histamine release by tyrosine kinase and phosphatidylinositol 3-kinase inhibitors. Int J Immunopharmacol. 2000;22(10):797–808.

    CAS  PubMed  Google Scholar 

  89. Lavens SE, Peachell PT, Warner JA. Role of tyrosine kinases in IgE-mediated signal transduction in human lung mast cells and basophils. Am J Respir Cell Mol Biol. 1992;7(6):637–44.

    CAS  PubMed  Google Scholar 

  90. Lober K, Alfonso A, Escribano L, Botana LM. Influence of the tyrosine kinase inhibitors STI571 (Glivec), lavendustin A and genistein on human mast cell line (HMC-1(560)) activation. J Cell Biochem. 2008;103(4):1076–88.

    CAS  PubMed  Google Scholar 

  91. Alexandrakis MG, Kyriakou DS, Kempuraj D, Huang M, Boucher W, Seretakis D, Theoharides TC. The isoflavone genistein inhibits proliferation and increases histamine content in human leukemic mast cells. Allergy Asthma Proc. 2003;24(5):373–7.

    CAS  PubMed  Google Scholar 

  92. Bao ZS, Hong L, Guan Y, Dong XW, Zheng HS, Tan GL, Xie QM. Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma. Int Immunopharmacol. 2011;11(8):899–906.

    CAS  PubMed  Google Scholar 

  93. Regal JF, Fraser DG, Weeks CE, Greenberg NA. Dietary phytoestrogens have anti-inflammatory activity in a guinea pig model of asthma. Proc Soc Exp Biol Med. 2000;223(4):372–8.

    CAS  PubMed  Google Scholar 

  94. Huntley JF, Gooden C, Newlands GF, Mackellar A, Lammas DA, Wakelin D, Tuohy M, Woodbury RG, Miller HR. Distribution of intestinal mast cell proteinase in blood and tissues of normal and Trichinella-infected mice. Parasite Immunol. 1990;12(1):85–95.

    CAS  PubMed  Google Scholar 

  95. Newlands GF, Gibson S, Knox DP, Grencis R, Wakelin D, Miller HR. Characterization and mast cell origin of a chymotrypsin-like proteinase isolated from intestines of mice infected with Trichinella spiralis. Immunology. 1987;62(4):629–34.

    CAS  PubMed  Google Scholar 

  96. Kalhan R, Smith LJ, Nlend MC, Nair A, Hixon JL, Sporn PHS. A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesis. Clin Exp Allergy. 2008;38(1):103–12.

    CAS  PubMed  Google Scholar 

  97. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20(10):1945–52.

    CAS  PubMed  Google Scholar 

  98. Hooshmand S, Soung do Y, Lucas EA, Madihally SV, Levenson CW, Arjmandi BH. Genistein reduces the production of proinflammatory molecules in human chondrocytes. J Nutr Biochem 2007;18(9):609–14.

    Google Scholar 

  99. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007;2007:45673.

    PubMed  Google Scholar 

  100. Sheu F, Lai H-H, Yen G-C. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J Agric Food Chem. 2001;49(4):1767–72.

    CAS  PubMed  Google Scholar 

  101. Kang JS, Yoon YD, Han MH, Han SB, Lee K, Kang MR, Moon EY, Jeon YJ, Park SK, Kim HM. Estrogen receptor-independent inhibition of tumor necrosis factor-Π± gene expression by phytoestrogen equol is mediated by blocking nuclear factor-κB activation in mouse macrophages. Biochem Pharmacol. 2005;71(1–2):136–43.

    CAS  PubMed  Google Scholar 

  102. Gu L, House SE, Prior RL, Fang N, Ronis MJ, Clarkson TB, Wilson ME, Badger TM. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J Nutr. 2006;136(5):1215–21.

    CAS  PubMed  Google Scholar 

  103. Andres A, Donovan SM, Kuhlenschmidt MS. Soy isoflavones and virus infections. J Nutr Biochem. 2009;20(8):563–9.

    CAS  PubMed  Google Scholar 

  104. Messina M. Insights gained from 20 years of soy research. J Nutr. 2010;140(12):2289S–95S.

    CAS  PubMed  Google Scholar 

  105. Omoni AO, Aluko RE. Soybean foods and their benefits: potential mechanisms of action. Nutr Rev. 2005;63(8):272–83.

    PubMed  Google Scholar 

  106. Reiter E, Beck V, Medjakovic S, Jungbauer A. Isoflavones are safe compounds for therapeutical applications—evaluation of in vitro data. Gynecol Endocrinol. 2009;25(9):554–80.

    CAS  PubMed  Google Scholar 

  107. Yan L, Spitznagel EL. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr. 2009;89(4):1155–63.

    CAS  PubMed  Google Scholar 

  108. Wu AH, Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast cancer risk. Br J Cancer. 2008;98(1):9–14.

    CAS  PubMed  Google Scholar 

  109. Wu AH, Yang D, Pike MC. A meta-analysis of soyfoods and risk of stomach cancer: the problem of potential confounders. Cancer Epidemiol Biomarkers Prev. 2000;9(10):1051–8.

    CAS  PubMed  Google Scholar 

  110. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(1):38–50.

    CAS  PubMed  Google Scholar 

  111. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M. Soy protein, isoflavones, and cardiovascular health: an American heart association science advisory for professionals from the nutrition committee. Circulation. 2006;113(7):1034–44.

    CAS  PubMed  Google Scholar 

  112. Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81(2):397–408.

    CAS  PubMed  Google Scholar 

  113. The role of soy isoflavones in menopausal health: report of The North American Menopause Society/Wulf H. Utian Translational Science Symposium in Chicago, IL (October 2010). Menopause 2011;18(7):732–53.

  114. Baeza I, De Castro NM, Gimenez-Llort L, De la Fuente M. Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J Neuroimmunol. 2010;219(1–2):90–9.

    CAS  PubMed  Google Scholar 

  115. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol. 1999;162(11):6572–9.

    CAS  PubMed  Google Scholar 

  116. Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10(3):119–24.

    CAS  PubMed  Google Scholar 

  117. Tyagi AM, Srivastava K, Sharan K, Yadav D, Maurya R, Singh D. Daidzein Prevents the Increase in CD4 <sup>+</sup> CD28null T cells and B Lymphopoiesis in ovariectomized mice: a key mechanism for anti-osteoclastogenic effect. PLoS ONE. 2011;6(6):e21216.

    CAS  PubMed  Google Scholar 

  118. Baeza I, De Castro NM, Arranz L, De la Fuente Mn. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res 2010;13(6):665–74.

    Google Scholar 

  119. Yellayi S, Naaz A, Szewczykowski MA, Sato T, Woods JA, Chang J, Segre M, Allred CD, Helferich WG, Cooke PS. The phytoestrogen genistein induces thymic and immune changes: a human health concern? Proc Natl Acad Sci USA. 2002;99(11):7616–21.

    CAS  PubMed  Google Scholar 

  120. Yellayi S, Zakroczymski MA, Selvaraj V, Valli VE, Ghanta V, Helferich WG, Cooke PS. The phytoestrogen genistein suppresses cell-mediated immunity in mice. J Endocrinol 2003;176(2):267–74.

    Google Scholar 

  121. Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm Res. 2003;52(8):341–6.

    CAS  PubMed  Google Scholar 

  122. Nalbandian G, Kovats S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res. 2005;31(2):91–106.

    CAS  PubMed  Google Scholar 

  123. Suenaga R, Evans MJ, Mitamura K, Rider V, Abdou NI. Peripheral blood T cells and monocytes and B cell lines derived from patients with lupus express estrogen receptor transcripts similar to those of normal cells. J Rheumatol. 1998;25(7):1305–12.

    CAS  PubMed  Google Scholar 

  124. Gulshan S, McCruden AB, Stimson WH. Oestrogen receptors in macrophages. Scand J Immunol. 1990;31(6):691–7.

    CAS  PubMed  Google Scholar 

  125. Zhang R, Li Y, Wang W. Enhancement of immune function in mice fed high doses of soy daidzein. Nutr Cancer. 1997;29(1):24–8.

    CAS  PubMed  Google Scholar 

  126. Guo TL, McCay JA, Zhang LX, Brown RD, You L, Karrow NA, Germolec DR, White KL Jr. Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J Nutr. 2001;131(12):3251–8.

    CAS  PubMed  Google Scholar 

  127. Sakai T, Kogiso M, Mitsuya K, Komatsu T, Yamamoto S. Genistein enhances antigen-specific cytokine production in female DO11.10 transgenic mice. J Nutr Sci Vitaminol (Tokyo). 2006;52(5):327–32.

    CAS  Google Scholar 

  128. Sakai T, Furoku S, Nakamoto M, Shuto E, Hosaka T, Nishioka Y, Sone S. The soy isoflavone equol enhances antigen-specific IgE production in ovalbumin-immunized BALB/c mice. J Nutr Sci Vitaminol (Tokyo). 2010;56(1):72–6.

    CAS  Google Scholar 

  129. Miyake Y, Sasaki S, Ohya Y, Miyamoto S, Matsunaga I, Yoshida T, Hirota Y, Oda H, the Osaka M, Child Health Study G. Soy, isoflavones, and prevalence of allergic rhinitis in Japanese women: the Osaka maternal and child health study. J Allergy Clin Immunol 2005;115(6):1176–83.

    Google Scholar 

  130. Hirayama F, Lee AH, Binns CW, Hiramatsu N, Mori M, Nishimura K. Dietary intake of isoflavones and polyunsaturated fatty acids associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease: possible protective effect of traditional Japanese diet. Mol Nutr Food Res. 2010;54(7):909–17.

    CAS  PubMed  Google Scholar 

  131. Smith LJ, Holbrook JT, Wise R, Blumenthal M, Dozor AJ, Mastronarde J, Williams L. Dietary intake of soy genistein is associated with lung function in patients with asthma. J Asthma. 2004;41(8):833–43.

    CAS  PubMed  Google Scholar 

  132. Duan W, Kuo IC, Selvarajan S, Chua KY, Bay BH, Wong WSF. Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. Am J Respir Crit Care Med. 2003;167(2):185–92.

    PubMed  Google Scholar 

  133. Zhang T, Pan W, Takebe M, Schofield B, Sampson H, Li X-M. Therapeutic effects of a fermented soy product on peanut hypersensitivity is associated with modulation of T-helper type 1 and T-helper type 2 responses. Clin Exp Allergy. 2008;38(11):1808–18.

    CAS  PubMed  Google Scholar 

  134. Morimoto M, Watanabe T, Yamori M, Takebe M, Wakatsuki Y. Isoflavones regulate innate immunity and inhibit experimental colitis. J Gastroenterol Hepatol. 2009;24(6):1123–9.

    CAS  PubMed  Google Scholar 

  135. Seibel J, Molzberger A, Hertrampf T, Laudenbach-Leschowski U, Diel P. Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur J Nutr. 2009;48(4):213–20.

    CAS  PubMed  Google Scholar 

  136. Seibel J, Molzberger A, Hertrampf T, Laudenbach-Leschowski U, Degen G, Diel P. In utero and postnatal exposure to a phytoestrogen-enriched diet increases parameters of acute inflammation in a rat model of TNBS-induced colitis. Arch Toxicol. 2008;82(12):941–50.

    CAS  PubMed  Google Scholar 

  137. Sakai T, Furoku S, Nakamoto M, Shuto E, Hosaka T, Nishioka Y, Sone S. Soy isoflavone equol perpetuates dextran sulfate sodium-induced acute colitis in mice. Biosci Biotechnol Biochem. 2011;75(3):593–5.

    CAS  PubMed  Google Scholar 

  138. Wang J, Zhang Q, Jin S, He D, Zhao S, Liu S. Genistein modulate immune responses in collagen-induced rheumatoid arthritis model. Maturitas. 2008;59(4):405–12.

    CAS  PubMed  Google Scholar 

  139. Hong YH, Wang TC, Huang CJ, Cheng WY, Lin BF. Soy isoflavones supplementation alleviates disease severity in autoimmune-prone MRL-lpr/lpr mice. Lupus. 2008;17(9):814–21.

    CAS  PubMed  Google Scholar 

  140. Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev. 2008;24(1):74–81.

    CAS  PubMed  Google Scholar 

  141. De Paula ML, Rodrigues DH, Teixeira HC, Barsante MM, Souza MA, Ferreira AP. Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2008;8(9):1291–7.

    PubMed  Google Scholar 

  142. O'Connor TP, Liesen DA, Mann PC, Rolando L, Banz WJ. A high isoflavone soy protein diet and intravenous genistein delay rejection of rat cardiac allografts. J Nutr. 2002;132(8):2283–7.

    PubMed  Google Scholar 

  143. Zhu GC, Ding Z, Chen ZS, Dong C, Guo H, Chen BC. Experimental study on genistein prevention and treatment of transplant arteriosclerosis in aortic transplants of rat. Transplant Proc. 2006;38(10):3307–8.

    CAS  PubMed  Google Scholar 

  144. Cupisti A, Ghiadoni L, D'Alessandro C, Kardasz I, Morelli E, Panichi V, Locati D, Morandi S, Saba A, Barsotti G, Taddei S, Arnoldi A, Salvetti A. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrol Dial Transplant. 2007;22(1):229–34.

    CAS  PubMed  Google Scholar 

  145. Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo S-M. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett. 2004;215(1):21–8.

    CAS  PubMed  Google Scholar 

  146. Hwang J, Wang J, Morazzoni P, Hodis HN, Sevanian A. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radic Biol Med. 2003;34(10):1271–82.

    CAS  PubMed  Google Scholar 

  147. Choi C, Cho H, Park J, Cho C, Song Y. Suppressive effects of genistein on oxidative stress and NFkappaB activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem. 2003;67(9):1916–22.

    CAS  PubMed  Google Scholar 

  148. Blay M, Espinel AE, Delgado MA, Baiges I, Blade C, Arola L, Salvado J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J Pharm Biomed Anal. 2010;51(2):382–90.

    CAS  PubMed  Google Scholar 

  149. Kang JS, Yoon YD, Han MH, Han SB, Lee K, Park SK, Kim HM. Equol inhibits nitric oxide production and inducible nitric oxide synthase gene expression through down-regulating the activation of Akt. Int Immunopharmacol. 2007;7(4):491–9.

    CAS  PubMed  Google Scholar 

  150. Davis JN, Kucuk O, Djuric Z, Sarkar FH. Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Radic Biol Med. 2001;30(11):1293–302.

    CAS  PubMed  Google Scholar 

  151. Wang W, Higuchi CM, Zhang R. Individual and combinatory effects of soy isoflavones on the in vitro potentiation of lymphocyte activation. Nutr Cancer. 1997;29(1):29–34.

    CAS  PubMed  Google Scholar 

  152. Baeza I, de Castro NM, Alvarado C, Alvarez P, Arranz L, Bayon J, de la Fuente M. Improvement of immune cell functions in aged mice treated for five weeks with soybean isoflavones. Ann N Y Acad Sci. 2007;1100:497–504.

    CAS  PubMed  Google Scholar 

  153. Schleipen B, Hertrampf T, Fritzemeier KH, Kluxen FM, Lorenz A, Molzberger A, Velders M, Diel P. ERbeta-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine. Carcinogenesis. 2011;32(11):1675–83.

    CAS  PubMed  Google Scholar 

  154. Calemine J, Zalenka J, Karpuzoglu-Sahin E, Ward DL, Lengi A, Ahmed SA. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, alpha-zearalanol, and genistein): effects on interferon-gamma. Toxicology. 2003;194(1–2):115–28.

    CAS  PubMed  Google Scholar 

  155. Sakai T, Kogiso M, Mitsuya K, Komatsu T, Yamamoto S. Genistein suppresses development of spontaneous atopic-like dermatitis in NC/Nga mice. J Nutr Sci Vitaminol (Tokyo). 2006;52(4):293–6.

    CAS  Google Scholar 

  156. Klein SL, Wisniewski AB, Marson AL, Glass GE, Gearhart JP. Early exposure to genistein exerts long-lasting effects on the endocrine and immune systems in rats. Mol Med. 2002;8(11):742–9.

    CAS  PubMed  Google Scholar 

  157. Guo TL, Zhang XL, Bartolucci E, McCay JA, White KL Jr, You L. Genistein and methoxychlor modulate the activity of natural killer cells and the expression of phenotypic markers by thymocytes and splenocytes in F0 and F1 generations of Sprague-Dawley rats. Toxicology. 2002;172(3):205–15.

    CAS  PubMed  Google Scholar 

  158. Guo TL, White KL Jr, Brown RD, Delclos KB, Newbold RR, Weis C, Germolec DR, McCay JA. Genistein modulates splenic natural killer cell activity, antibody-forming cell response, and phenotypic marker expression in F(0) and F(1) generations of Sprague-Dawley rats. Toxicol Appl Pharmacol. 2002;181(3):219–27.

    CAS  PubMed  Google Scholar 

  159. Curran EM, Judy BM, Newton LG, Lubahn DB, Rottinghaus GE, Macdonald RS, Franklin C, Estes DM. Dietary soy phytoestrogens and ERalpha signalling modulate interferon gamma production in response to bacterial infection. Clin Exp Immunol. 2004;135(2):219–25.

    CAS  PubMed  Google Scholar 

  160. Guo TL, Chi RP, Germolec DR, White KL. Stimulation of the immune response in B6C3F1 mice by genistein is affected by exposure duration, gender, and litter order. J Nutr. 2005;135(10):2449–56.

    CAS  PubMed  Google Scholar 

  161. Guo TL, Chi RP, Zhang XL, Musgrove DL, Weis C, Germolec DR, White KL Jr. Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: Evidence of thymic regulation. Food Chem Toxicol. 2006;44(3):316–25.

    CAS  PubMed  Google Scholar 

  162. Huang Y, Cao S, Nagamani M, Anderson KE, Grady JJ, Lu L-JW. Decreased circulating levels of tumor necrosis factor-{alpha} in postmenopausal women during consumption of soy-containing isoflavones. J Clin Endocrinol Metab. 2005;90(7):3956–62.

    CAS  PubMed  Google Scholar 

  163. Ryan-Borchers TA, Park JS, Chew BP, McGuire MK, Fournier LR, Beerman KA. Soy isoflavones modulate immune function in healthy postmenopausal women. Am J Clin Nutr. 2006;83(5):1118–25.

    CAS  PubMed  Google Scholar 

  164. Jenkins DJA, Kendall CWC, Connelly PW, Jackson CJC, Parker T, Faulkner D, Vidgen E. Effects of high- and low-isoflavone (phytoestrogen) soy foods on inflammatory biomarkers and proinflammatory cytokines in middle-aged men and women. Metabolism. 2002;51(7):919–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded by the Jaffe Food Allergy Institute, Mount Sinai School of Medicine, New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhan Masilamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masilamani, M., Wei, J. & Sampson, H.A. Regulation of the immune response by soybean isoflavones. Immunol Res 54, 95–110 (2012). https://doi.org/10.1007/s12026-012-8331-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8331-5

Keywords

Navigation