Skip to main content

Advertisement

Log in

Genetic and epigenetic mechanisms in thyroid autoimmunity

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Autoimmune thyroid diseases (AITD), including Graves’ disease and Hashimoto’s thyroiditis, are among the commonest autoimmune disorders, affecting approximately 5 % of the population. Epidemiological data support strong genetic influences on the development of AITD. Since the identification of HLA-DR3 as a major AITD susceptibility gene, there have been significant advances made in our understanding of the genetic mechanisms leading to AITD. We have shown that an amino acid substitution of alanine or glutamine with arginine at position 74 in the HLA-DR peptide binding pocket is a critical factor in the development of AITD, and we are continuing to dissect these mechanisms at the molecular level. In addition to the MHC class II genes, there are now several other confirmed gene loci associated with AITD, including immune-regulatory (CD40, CTLA-4, PTPN22, FOXP3, and CD25) and thyroid-specific genes (thyroglobulin and TSHR). Mechanistically, it is postulated that susceptibility genes interact with certain environmental triggers to induce AITD through epigenetic effects. In this review, we summarize some of the recent advances made in our laboratory dissecting the genetic–epigenetic interactions underlying AITD. As shown in our recent studies, epigenetic modifications offer an attractive mechanistic possibility that can provide further insight into the etiology of AITD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cocks Eschler D, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allerg Immunol. 2011;41(2):190–7.

    Google Scholar 

  2. Brent GA. Environmental exposures and autoimmune thyroid disease. Thyroid. 2010;20(7):755–61.

    Article  PubMed  Google Scholar 

  3. Papanastasiou L, Vatalas IA, Koutras DA, Mastorakos G. Thyroid autoimmunity in the current iodine environment. Thyroid. 2007;17(8):729–39.

    Article  PubMed  CAS  Google Scholar 

  4. Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43(4):661–72.

    Article  PubMed  CAS  Google Scholar 

  5. Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30:58–62.

    Article  PubMed  CAS  Google Scholar 

  6. Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32:231–9.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson EM, Tomer Y. The CD40, CTLA4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J Autoimmun. 2007;28:85–98.

    Article  PubMed  CAS  Google Scholar 

  8. Zamani M, Spaepen M, Bex M, Bouillon R, Cassiman JJ. Primary role of the HLA class II DRB1*0301 allele in graves disease. Am J Med Genet. 2000;95:432–7.

    Article  PubMed  CAS  Google Scholar 

  9. Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y. Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endcrinol Metab. 2005;90(8):4904–11.

    Article  CAS  Google Scholar 

  10. Menconi F, Osman R, Monti MC, Greenberg DA, Concepcion ES, Tomer Y. Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci USA. 2010;107(39):16899–903.

    Article  PubMed  CAS  Google Scholar 

  11. Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20(7):715–25.

    Article  PubMed  CAS  Google Scholar 

  12. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi R, Tomer Y. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.

    Article  PubMed  CAS  Google Scholar 

  13. Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillieres Clin Endocrinol Metab. 1995;9:631–56.

    Article  PubMed  CAS  Google Scholar 

  14. Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta-chain protects against type 1 diabetes: a family study. Proc Natl Acad Sci USA. 1988;85:8111–5.

    Article  PubMed  CAS  Google Scholar 

  15. Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr Smith J, Gibson SM, Walker N, Tomer Y, Franklyn JA, Todd JA, Gough SC. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet. 2005;76(1):157–63.

    Article  PubMed  CAS  Google Scholar 

  16. Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, Ban Y, Jacobson EM, Concepcion ES, Li CW, Tomer Y. Molecular amino acid signatures in the MHC class II peptide binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci USA. 2008;105(37):14034–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, Villanueva R, Tomer Y. Possible interaction between HLA-DRβ1 and thyroglobulin variants in Graves’ disease. Thyroid. 2006;16:351–5.

    Article  PubMed  CAS  Google Scholar 

  18. Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, Davies TF. Common and unique susceptibility loci in Graves’ and Hashimoto disease: results of whole genome screening in a data set of 102 multiplex families. Am J Hum Genet. 2003;73(4):736–47.

    Article  PubMed  CAS  Google Scholar 

  19. Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet. 2001;10(13):1379–86.

    Article  PubMed  CAS  Google Scholar 

  20. Ban Y, Greenberg DA, Concepcion ES, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100:15119–24.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobson EM, Yang H, Menconi F, Wang R, Osman R, Skrabanek L, Li CW, Fadlalla M, Gandhi A, Chaturvedi V, Smith EP, Schwemberger S, Osterburg A, Babcock GF, Tomer Y. Employing a recombinant HLA-DR3 expression system to dissect major histocompatibility complex II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective. J Biol Chem. 2009;284(49):34231–43.

    Article  PubMed  CAS  Google Scholar 

  22. Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Concepcion E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.

    Article  PubMed  CAS  Google Scholar 

  23. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.

    Article  PubMed  CAS  Google Scholar 

  24. Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002;12(12):1129–35.

    Article  PubMed  CAS  Google Scholar 

  25. Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a C/T single nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves’ disease in Japanese. Thyroid. 2006;16(5):443–6.

    Article  PubMed  CAS  Google Scholar 

  26. Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, Ho K, Tomer Y. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun. 2007;8(3):205–14.

    Article  PubMed  CAS  Google Scholar 

  27. Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology. 2005;146(6):2684–91.

    Article  PubMed  CAS  Google Scholar 

  28. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165:6635–43.

    PubMed  CAS  Google Scholar 

  29. Metcalfe RA, McIntosh RS, Marelli-Berg F, Lombardi G, Lechler R, Weetman AP. Detection of CD40 on human thyroid follicular cells: analysis of expression and function. J Clin Endocrinol Metab. 1998;83(4):1268–74.

    Article  PubMed  CAS  Google Scholar 

  30. Jungel A, Ospelt C, Gay S. What can we learn from epigenetics in the year 2009? Curr Opin Rheumatol. 2010;22(3):284–92.

    Article  PubMed  Google Scholar 

  31. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    Article  PubMed  CAS  Google Scholar 

  32. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3:33.

    Article  PubMed  Google Scholar 

  33. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R711–22.

    Article  PubMed  CAS  Google Scholar 

  34. Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol. 2009;5(5):266–72.

    Article  PubMed  CAS  Google Scholar 

  35. Youngblood B, Reich NO. The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics. 2008;3(3):149–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health Grants DK61659, DK067555, and DK073681. This work was also supported by a Veterans Affairs merit award (to Y.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Tomer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasham, A., Tomer, Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res 54, 204–213 (2012). https://doi.org/10.1007/s12026-012-8302-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8302-x

Keywords

Navigation