Skip to main content

Advertisement

Log in

Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology

  • Singapore Immunology Network
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Chikungunya virus (CHIKV), an alphavirus, has been responsible for large epidemic outbreaks with serious economic and social impact during the last 6 years. Transmitted by Aedes mosquitoes, it causes Chikungunya fever, an acute illness in patients with a stooped posture often associated with chronic and incapacitating arthralgia. The unprecedented re-emergence has stimulated renewed interest in CHIKV. This review discusses the advantages and disadvantages of different animal models for CHIKV infections and their importance to study the role of the immune system in different pathologies caused by CHIKV. We also reveal how such studies still present a difficult challenge, but are indispensible for mechanistic studies to further understand the pathophysiology of CHIKV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Her Z, Kam YW, Lin RTP, Ng LFP. Chikungunya: a bending reality. Microbes Infect. 2009;11:1165–76.

    Article  PubMed  Google Scholar 

  2. Watanaveeradej V, Endy TP, Simasathien S, Kerdpanich A, Polprasert N, Aree C, Vaughn DW, Nisalak A. The study transplacental Chikungunya virus antibody kinetics, Thailand. Emerg Infect Dis. 2006;12:1770–2.

    Article  PubMed  Google Scholar 

  3. Seneviratne SL, Perera J. Fever epidemic moves into Sri Lanka. BMJ. 2006;333:1220–1.

    Article  PubMed  Google Scholar 

  4. Kumarasamy V, Prathapa S, Zuridah H, Chem YK, Norizah I, Chua KB. Re-emergence of Chikungunya virus in Malaysia. Med J Malaysia. 2006;61:221–5.

    PubMed  CAS  Google Scholar 

  5. Laras K, Sukri NC, Larasati RP, Bangs MJ, Kosim R, Djauzi S, Wandra T, Master J, Kosasih H, Hartati S, Beckett C, Sedyaningsih ER, Beecham HJ, Corwin AL. Tracking the re-emergence of epidemic Chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg. 2005;99:128–41.

    Article  PubMed  Google Scholar 

  6. Ravi V. Re-emergence of Chikungunya virus in India. Indian J Med Microbiol. 2006;24:83–4.

    Article  PubMed  CAS  Google Scholar 

  7. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3:201.

    Article  CAS  Google Scholar 

  8. Salvador B, Zhou Y, Michault A, Muench MO, Simmons G. Characterization of Chikungunya pseudotyped viruses: identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology. 2009;393:33–41.

    Article  PubMed  CAS  Google Scholar 

  9. Higgs S, Ziegler SA. A nonhuman primate model of Chikungunya disease. J Clin Invest. 2010;120:657–60.

    Article  PubMed  CAS  Google Scholar 

  10. Diseases of Environmental and Zoonotic Origin Team European Centre for Disease Prevention and Control. Chikungunya in Italy: actions in and implications for the European Union. Euro Surveill. 2007;12:E070906.2.

    Google Scholar 

  11. Sudeep AB, Parashar D. Chikungunya: an overview. J Biosci. 2008;33:443–9.

    Article  PubMed  CAS  Google Scholar 

  12. Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg. 1955;49:28–32.

    Article  PubMed  CAS  Google Scholar 

  13. Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N, Becquart JP, Wengling C, Michault A, Paganin F. Outbreak of Chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin Infect Dis. 2007;44:1401–7.

    Article  PubMed  Google Scholar 

  14. Lakshmi V, Neeraja M, Subbalaxmi MVS, Parida MM, Dash PK, Santhosh SR, Rao PVL. Clinical features and molecular diagnosis of Chikungunya fever from South India. Clin Infect Dis. 2008;46:1436–42.

    Article  PubMed  Google Scholar 

  15. Carmona RJ, Shaikh S, Khalidi NA. Chikungunya viral polyarthritis. J Rheumatol. 2008;35:935–6.

    PubMed  Google Scholar 

  16. Jaffar-Bandjee MC, Das T, Hoarau JJ, Krejbich Trotot P, Denizot M, Ribera A, Roques P, Gasque P. Chikungunya virus takes centre stage in virally induced arthritis: possible cellular and molecular mechanisms to pathogenesis. Microbes Infect. 2009;11:1206–18.

    Article  PubMed  CAS  Google Scholar 

  17. Mizuno Y, Kato Y, Takeshita N, Ujiie M, Kobayashi T, Kanagawa S, Kudo K, Lim CK, Takasaki T. Clinical and radiological features of imported chikungunya fever in Japan: a study of six cases at the National Center for Global Health and Medicine. J Infect Chemother. 2010;17(3):419–23.

    Article  PubMed  Google Scholar 

  18. Ozden S, et al. Human muscle satellite cells as targets of Chikungunya virus infection. PLoS ONE. 2007;2:e527.

    Article  PubMed  CAS  Google Scholar 

  19. Lokireddy S, Vemula S, Vadde R. Connective tissue metabolism in Chikungunya patients. Virol J. 2008;5:31.

    Article  PubMed  CAS  Google Scholar 

  20. Mohan A. Chikungunya fever: clinical manifestations & management. Indian J Med Res. 2006;124:471–4.

    PubMed  Google Scholar 

  21. Brighton SW, Prozesky OW, de la Harpe AL. Chikungunya virus infection. A retrospective study of 107 cases. S Afr Med J. 1983;63:313–5.

    PubMed  CAS  Google Scholar 

  22. McGill PE. Viral infections: alpha-viral arthropathy. Baillieres Clin Rheumatol. 1995;9:145–50.

    Article  PubMed  CAS  Google Scholar 

  23. De Andrade DC, Jean S, Clavelou P, Dallel R, Bouhassira D. Chronic pain associated with the Chikungunya fever: long lasting burden of an acute illness. BMC Infect Dis. 2010;10:31.

    Article  PubMed  Google Scholar 

  24. Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L, Michault A, Arvin-Berod C, Paganin F. Persistent arthralgia associated with Chikungunya virus: a study of 88 adult patients on Reunion Island. Clin Infect Dis. 2008;47:469–75.

    Article  PubMed  Google Scholar 

  25. Solanki BS, Arya SC, Maheshwari P. Chikungunya disease with nephritic presentation. Int J Clin Pract. 2007;61:1941.

    Article  PubMed  CAS  Google Scholar 

  26. Mirabel M, Vignaux O, Lebon P, Legmann P, Weber S, Meune C. Acute myocarditis due to Chikungunya virus assessed by contrast-enhanced MRI. Int J Cardiol. 2007;121:e7–8.

    Article  PubMed  Google Scholar 

  27. Simon F, Paule P, Oliver M. Chikungunya virus-induced myopericarditis: toward an increase of dilated cardiomyopathy in countries with epidemics? Am J Trop Med Hyg. 2008;78:212–3.

    PubMed  Google Scholar 

  28. Mittal A, Mittal S, Bharati MJ, Ramakrishnan R, Saravanan S, Sathe PS. Optic neuritis associated with chikungunya virus infection in South India. Arch Ophthalmol. 2007;125:1381–6.

    Article  PubMed  Google Scholar 

  29. Robin S, Ramful D, Le Seach’ F, Jaffar-Bandjee MC, Rigou G, Alessandri JL. Neurologic manifestations of pediatric Chikungunya infection. J Child Neurol. 2008;23:1028–35.

    Article  PubMed  Google Scholar 

  30. Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS, Morey SH, Purohit HJ, Taori GM, Daginawala HF. Neurological complications of Chikungunya virus infection. Neurol India. 2009;57:177–80.

    Article  PubMed  Google Scholar 

  31. Ganesan K, Diwan A, Shankar SK, Desai SB, Sainani GS, Katrak SM. Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings. AJNR Am J Neuroradiol. 2008;29:1636–7.

    Article  PubMed  CAS  Google Scholar 

  32. Lebrun G, Chadda K, Reboux AH, Martinet O, Gaüzère BA. Guillain-Barré syndrome after Chikungunya infection. Emerg Infect Dis. 2009;15:495–6.

    Article  PubMed  Google Scholar 

  33. Tournebize P, Charlin C, Lagrange M. Neurological manifestations in Chikungunya: about 23 cases collected in Reunion Island. Rev Neurol (Paris). 2009;165:48–51.

    Article  CAS  Google Scholar 

  34. Arpino C, Curatolo P, Rezza G. Chikungunya and the nervous system: what we do and do not know. Rev Med Virol. 2009;19:121–9.

    Article  PubMed  Google Scholar 

  35. Das T, et al. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol. 2010;91:121–9.

    Article  PubMed  CAS  Google Scholar 

  36. Ziegler SA, Lu L, da Rosa APAT, Xiao SY, Tesh RB. An animal model for studying the pathogenesis of Chikungunya virus infection. Am J Trop Med Hyg. 2008;79:133–9.

    PubMed  Google Scholar 

  37. Couderc T, et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4:e29.

    Article  PubMed  CAS  Google Scholar 

  38. Suckling AJ, Jagelman S, Webb HE. A comparison of brain lysosomal enzyme activities in four experimental Togavirus encephalitides. J Neurol Sci. 1978;35:355–64.

    Article  PubMed  CAS  Google Scholar 

  39. Gardner J, Anraku I, Le TT, Larcher T, Major L, Roques P, Schroder WA, Higgs S, Suhrbier A. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84:8021–32.

    Article  PubMed  CAS  Google Scholar 

  40. Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR, Gunn BM, Elmore SA, Heise MT. A mouse model of Chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am J Pathol. 2011;178:32–40.

    Article  PubMed  CAS  Google Scholar 

  41. Thangamani S, Higgs S, Ziegler S, Vanlandingham D, Tesh R, Wikel S. Host immune response to mosquito-transmitted Chikungunya virus differs from that elicited by needle inoculated virus. PLoS ONE. 2010;5:e12137.

    Article  PubMed  CAS  Google Scholar 

  42. Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 2006;19:74–82.

    Article  PubMed  CAS  Google Scholar 

  43. Edwards JF, Higgs S, Beaty BJ. Mosquito feeding-induced enhancement of Cache Valley Virus (Bunyaviridae) infection in mice. J Med Entomol. 1998;35:261–5.

    PubMed  CAS  Google Scholar 

  44. Ross RW. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond). 1956;54:177–91.

    Google Scholar 

  45. Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I, Weaver SC. Chimeric alphavirus vaccine candidates for Chikungunya. Vaccine. 2008;26:5030–9.

    Article  PubMed  CAS  Google Scholar 

  46. Powers AM, Logue CH. Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88:2363–77.

    Article  PubMed  CAS  Google Scholar 

  47. Grivard P, et al. Molecular and serological diagnosis of Chikungunya virus infection. Pathol Biol (Paris). 2007;55:490–4.

    Article  CAS  Google Scholar 

  48. Ziegler SA, Nuckols J, McGee CE, Huang YJS, Vanlandingham DL, Tesh RB, Higgs S. In vivo imaging of Chikungunya virus in mice and Aedes Mosquitoes using a Renilla Luciferase clone. Vector Borne Zoonotic Dis. 2011;11(11):1471–7.

    Article  PubMed  Google Scholar 

  49. Morrison TE, Whitmore AC, Shabman RS, Lidbury BA, Mahalingam S, Heise MT. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J Virol. 2006;80:737–49.

    Article  PubMed  CAS  Google Scholar 

  50. Suckling AJ, Pathak S, Jagelman S, Webb HE. Virus-associated demyelination. A model using avirulent Semliki Forest virus infection of mice. J Neurol Sci. 1978;39:147–54.

    Article  PubMed  CAS  Google Scholar 

  51. Moss HE, Tansey EM, Milner P, Lincoln J, Burnstock G. Neuropeptide immunoreactivity and choline acetyltransferase activity in the mouse urinary bladder following inoculation with Semliki Forest Virus. J Auton Nerv Syst. 1990;31:47–56.

    Article  PubMed  CAS  Google Scholar 

  52. Coppenhaver DH, Singh IP, Sarzotti M, Levy HB, Baron S. Treatment of intracranial alphavirus infections in mice by a combination of specific antibodies and an interferon inducer. Am J Trop Med Hyg. 1995;52:34–40.

    PubMed  CAS  Google Scholar 

  53. Safavi F, Feliberti JP, Raine CS, Mokhtarian F. Role of γδ T cells in antibody production and recovery from SFV demyelinating disease. J Neuroimmunol. 2011;235:18–26.

    Article  PubMed  CAS  Google Scholar 

  54. Kuehne RW, Pannier WL, Stephen EL. Indirect mouse model for the evaluation of potential antiviral compounds: results with Venezuelan Equine Encephalomyelitis virus. Antimicrob Agents Chemother. 1977;11:683–7.

    Article  PubMed  CAS  Google Scholar 

  55. Grieder FB, Davis BK, Zhou XD, Chen SJ, Finkelman FD, Gause WC. Kinetics of cytokine expression and regulation of host protection following infection with molecularly cloned Venezuelan Equine Encephalitis virus. Virology. 1997;233:302–12.

    Article  PubMed  CAS  Google Scholar 

  56. Aronson JF, Grieder FB, Davis NL, Charles PC, Knott T, Brown K, Johnston RE. A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan Equine Encephalitis virus. Virology. 2000;270:111–23.

    Article  PubMed  CAS  Google Scholar 

  57. Cook SH, Griffin DE. Luciferase imaging of a neurotropic viral infection in intact animals. J Virol. 2003;77:5333–8.

    Article  PubMed  CAS  Google Scholar 

  58. Logue CH, et al. Virulence variation among isolates of Western Equine Encephalitis virus in an outbred mouse model. J Gen Virol. 2009;90:1848–58.

    Article  PubMed  CAS  Google Scholar 

  59. Nagata LP, Hu WG, Masri SA, Rayner GA, Schmaltz FL, Das D, Wu J, Long MC, Chan C, Proll D, Jager S, Jebailey L, Suresh MR, Wong JP. Efficacy of DNA vaccination against Western Equine Encephalitis virus infection. Vaccine. 2005;23:2280–3.

    Article  PubMed  CAS  Google Scholar 

  60. Schilte C, et al. Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010;207:429–42.

    Article  PubMed  CAS  Google Scholar 

  61. Dhanwani R, Khan M, Alam SI, Rao PVL, Parida M. Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics. 2011;11:1936–51.

    Article  PubMed  CAS  Google Scholar 

  62. Morrison TE, Fraser RJ, Smith PN, Mahalingam S, Heise MT. Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. J Virol. 2007;81:5132–43.

    Article  PubMed  CAS  Google Scholar 

  63. Morrison TE, Simmons JD, Heise MT. Complement receptor 3 promotes severe Ross River virus-induced disease. J Virol. 2008;82:11263–72.

    Article  PubMed  CAS  Google Scholar 

  64. Lidbury BA, Rulli NE, Suhrbier A, Smith PN, McColl SR, Cunningham AL, Tarkowski A, van Rooijen N, Fraser RJ, Mahalingam S. Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J Infect Dis. 2008;197:1585–93.

    Article  PubMed  CAS  Google Scholar 

  65. Herrero LJ, Nelson M, Srikiatkhachorn A, Gu R, Anantapreecha S, Fingerle-Rowson G, Bucala R, Morand E, Santos LL, Mahalingam S. Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A. 2011;108:12048–53.

    Article  PubMed  CAS  Google Scholar 

  66. Bradish CJ, Titmuss D, Fitzgeorge R. The sensitivity to gamma-irradiation of the phases of the virus-host interaction: studies with strains of Semliki Forest virus in mice. J Gen Virol. 1980;48:39–51.

    Article  PubMed  CAS  Google Scholar 

  67. Mokhtarian F, Huan CM, Roman C, Raine CS. Semliki Forest virus-induced demyelination and remyelination–involvement of B cells and anti-myelin antibodies. J Neuroimmunol. 2003;137:19–31.

    Article  PubMed  CAS  Google Scholar 

  68. Keogh B, Atkins GJ, Mills KHG, Sheahan BJ. Role of interferon-gamma and nitric oxide in the neuropathogenesis of avirulent Semliki Forest virus infection. Neuropathol Appl Neurobiol. 2003;29:553–62.

    Article  PubMed  CAS  Google Scholar 

  69. Fragkoudis R, Breakwell L, McKimmie C, Boyd A, Barry G, Kohl A, Merits A, Fazakerley JK. The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J Gen Virol. 2007;88:3373–84.

    Article  PubMed  CAS  Google Scholar 

  70. Charles PC, Walters E, Margolis F, Johnston RE. Mechanism of neuroinvasion of Venezuelan Equine Encephalitis virus in the mouse. Virology. 1995;208:662–71.

    Article  PubMed  CAS  Google Scholar 

  71. Jackson AC, Rossiter JP. Apoptotic cell death is an important cause of neuronal injury in experimental Venezuelan Equine Encephalitis virus infection of mice. Acta Neuropathol. 1997;93:349–53.

    Article  PubMed  CAS  Google Scholar 

  72. Keogh B, Sheahan BJ, Atkins GJ, Mills KHG. Inhibition of matrix metalloproteinases ameliorates blood-brain barrier disruption and neuropathological lesions caused by avirulent Semliki Forest virus infection. Vet Immunol Immunopathol. 2003;94:185–90.

    Article  PubMed  CAS  Google Scholar 

  73. Paessler S, Yun NE, Judy BM, Dziuba N, Zacks MA, Grund AH, Frolov I, Campbell GA, Weaver SC, Estes DM. Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection. Virology. 2007;367:307–23.

    Article  PubMed  CAS  Google Scholar 

  74. Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991;254:856–60.

    Article  PubMed  CAS  Google Scholar 

  75. Tyor WR, Griffin DE. Virus specificity and isotype expression of intraparenchymal antibody-secreting cells during Sindbis virus encephalitis in mice. J Neuroimmunol. 1993;48:37–44.

    Article  PubMed  CAS  Google Scholar 

  76. Kam YW, Ong EKS, Rénia L, Tong JC, Ng LFP. Immuno-biology of Chikungunya and implications for disease intervention. Microbes Infect. 2009;11:1186–96.

    Article  PubMed  Google Scholar 

  77. Chow A, Her ZS, Ong KS, Chen J, Dimatatac F, Kwek DJC, Barkham T, Yang H, Renia L, Leo YS, Ng LFP. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. JID. 2011;203:149–57.

    Article  PubMed  CAS  Google Scholar 

  78. Ng LFP, Chow A, Sun YJ, Kwek DJC, Lim PL, Dimatatac F, Ng LC, Ooi EE, Choo KH, Her Z, Kourilsky P, Leo YS. IL-1beta, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS ONE. 2009;4:e4261.

    Article  PubMed  CAS  Google Scholar 

  79. Hoarau JJ, et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010;184:5914–27.

    Article  PubMed  CAS  Google Scholar 

  80. Chirathaworn C, Rianthavorn P, Wuttirattanakowit N, Poovorawan Y. Serum IL-18 and IL-18BP levels in patients with Chikungunya virus infection. Viral Immunol. 2010;23:113–7.

    Article  PubMed  CAS  Google Scholar 

  81. Chaaitanya IK, Muruganandam N, Sundaram SG, Kawalekar O, Sugunan AP, Manimunda SP, Ghosal SR, Muthumani K, Vijayachari P. Role of proinflammatory cytokines and chemokines in chronic arthropathy in CHIKV infection. Viral Immunol. 2011;24:265–71.

    Article  PubMed  CAS  Google Scholar 

  82. Kelvin AA, et al. Inflammatory cytokine expression is associated with Chikungunya virus resolution and symptom severity. PLoS Negl Trop Dis. 2011;5:e1279.

    Article  PubMed  CAS  Google Scholar 

  83. Sourisseau M, et al. Characterization of reemerging Chikungunya virus. PLoS Pathog. 2007;3:e89.

    Article  PubMed  CAS  Google Scholar 

  84. Labadie K, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120:894–906.

    Article  PubMed  CAS  Google Scholar 

  85. Her Z, Malleret B, Chan M, Ong EKS, Wong SC, Kwek DJC, Tolou H, Lin RTP, Tambyah PA, Rénia L, Ng LFP. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol. 2010;184:5903–13.

    Article  PubMed  CAS  Google Scholar 

  86. Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89:1–47.

    Article  PubMed  CAS  Google Scholar 

  87. Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, Vanlandingham DL, Higgs S, Fontanet A, Albert ML, Lenschow DJ. ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog. 2011;7:e1002322.

    Article  PubMed  CAS  Google Scholar 

  88. Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, Schnettler E, Vlak JM, Suhrbier A, Khromykh AA, Pijlman GP. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol. 2010;84:10877–87.

    Article  PubMed  CAS  Google Scholar 

  89. Manimunda SP, Vijayachari P, Uppoor R, Sugunan AP, Singh SS, Rai SK, Sudeep AB, Muruganandam N, Chaitanya IK, Guruprasad DR. Clinical progression of Chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans R Soc Trop Med Hyg. 2010;104:392–9.

    Article  PubMed  Google Scholar 

  90. Kulmatycki KM, Jamali F. Drug disease interactions: Role of inflammatory mediators in pain and variability in analgesic drug response. J Pharm Pharm Sci. 2007;10:554–66.

    PubMed  CAS  Google Scholar 

  91. Asquith DL, McInnes IB. Emerging cytokine targets in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:246–51.

    Article  PubMed  CAS  Google Scholar 

  92. Bryceson YT, Long EO. Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol. 2008;20:344–52.

    Article  PubMed  CAS  Google Scholar 

  93. Lanier LL. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol. 2008;8:259–68.

    Article  PubMed  CAS  Google Scholar 

  94. Petitdemange C, Becquart P, Wauquier N, Béziat V, Debré P, Leroy EM, Vieillard V. Unconventional repertoire profile is imprinted during acute Chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog. 2011;7:e1002268.

    Article  PubMed  CAS  Google Scholar 

  95. Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S. Protection from arthritis and myositis in a mouse model of acute Chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis. 2011;204:1026–30.

    Article  PubMed  CAS  Google Scholar 

  96. Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis. 2011;204:115–23.

    Article  PubMed  CAS  Google Scholar 

  97. Linn ML, Mateo L, Gardner J, Suhrbier A. Alphavirus-specific cytotoxic T lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J Virol. 1998;72:5146–53.

    PubMed  CAS  Google Scholar 

  98. Soden M, Vasudevan H, Roberts B, Coelen R, Hamlin G, Vasudevan S, La Brooy J. Detection of viral ribonucleic acid and histologic analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum. 2000;43:365–9.

    Article  PubMed  CAS  Google Scholar 

  99. Yun NE, Peng BH, Bertke AS, Borisevich V, Smith JK, Smith JN, Poussard AL, Salazar M, Judy BM, Zacks MA, Estes DM, Paessler S. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan Equine Encephalitis virus. Vaccine. 2009;27:4064–73.

    Article  PubMed  CAS  Google Scholar 

  100. Latif Z, Gates D, Wust CJ, Brown A. Cross protection among Togaviruses in nude mice and littermates. J Gen Virol. 1979;45:89–98.

    Article  PubMed  CAS  Google Scholar 

  101. Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18:723–37.

    PubMed  CAS  Google Scholar 

  102. Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T Cells. J Immunol. 1972;108(3):586–90.

    PubMed  CAS  Google Scholar 

  103. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    PubMed  CAS  Google Scholar 

  104. Olivares-Villagómez D, Wang YJ, Lafaille JJ. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein–specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med. 1998;188:1883–94.

    Article  PubMed  Google Scholar 

  105. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol. 2001;166(5):3008–18.

    PubMed  CAS  Google Scholar 

  106. Lanteri MC, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119:3266–77.

    PubMed  CAS  Google Scholar 

  107. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875–88.

    Article  PubMed  CAS  Google Scholar 

  108. Lund JM, Hsing L, Pham TT, Rudensky AY. Coordination of early protective immunity to viral infection by regulatory T cells. Science. 2008;320:1220–4.

    Article  PubMed  CAS  Google Scholar 

  109. Lühn K, et al. Increased frequencies of CD4+ CD25 (high) regulatory T cells in acute Dengue infection. J Exp Med. 2007;204:979–85.

    Article  PubMed  CAS  Google Scholar 

  110. Schwartz O, Albert ML. Biology and pathogenesis of Chikungunya virus. Nat Rev Microbiol. 2010;8:491–500.

    Article  PubMed  CAS  Google Scholar 

  111. Chia PY. Chikungunya fever: a review of a re-emerging mosquito-borne infectious disease and the current status. Curr Res Technol Educ Topics Appl Microbiol Microb Biotechnol. 2010;1:597.

    Google Scholar 

  112. Roediger B, Ng LG, Smith AL, Fazekas de St Groth B, Weninger W. Visualizing dendritic cell migration within the skin. Histochem Cell Biol. 2008;130:1131–46.

    Article  PubMed  CAS  Google Scholar 

  113. Ishii T, Ishii M. Intravital two-photon imaging: a versatile tool for dissecting the immune system. Ann Rheum Dis. 2011;70(Suppl 1):i113–5.

    Article  PubMed  Google Scholar 

  114. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16:334–8.

    Article  PubMed  CAS  Google Scholar 

  115. Mallilankaraman K, et al. A DNA vaccine against Chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis. 2011;5:e928.

    Article  PubMed  CAS  Google Scholar 

  116. Wang D, Suhrbier A, Penn-Nicholson A, Woraratanadharm J, Gardner J, Luo M, Le TT, Anraku I, Sakalian M, Einfeld D, Dong JY. A complex adenovirus vaccine against Chikungunya virus provides complete protection against viraemia and arthritis. Vaccine. 2011;29:2803–9.

    Article  PubMed  CAS  Google Scholar 

  117. Plante K, et al. Novel Chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 2011;7:e1002142.

    Article  PubMed  CAS  Google Scholar 

  118. Mirolo M, Fabbri M, Sironi M, Vecchi A, Guglielmotti A, Mangano G, Biondi G, Locati M, Mantovani A. Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. Eur Cytokine Netw. 2008;19:119–22.

    PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Nicholas K.W. Yeo for helpful discussions and suggestions. We are also grateful to Laurent Renia for critical reading of this manuscript. This work is supported in part by the intramural research funds by the Biomedical Research Council (BMRC), Agency for Science, Technology and Research (A*STAR) and also A*STAR’s Joint Council Office (JCO) Research Grant (grant number: CCOGA02_008_2008). T. Teo is funded by a post-graduate scholarship by the A*STAR Graduate Academy (AGA), and F. Lum is funded by a post-graduate research scholarship by the National University of Singapore (NUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa F. P. Ng.

Additional information

Teck-Hui Teo and Fok-Moon Lum contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, TH., Lum, FM., Lee, W.W.L. et al. Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology. Immunol Res 53, 136–147 (2012). https://doi.org/10.1007/s12026-012-8266-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8266-x

Keywords

Navigation