Skip to main content

Advertisement

Log in

The impact of bacterial infection on mast cell degranulation

  • Current Immunology Research at Jefferson
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In developed countries, the prevalence of allergy is on the rise. Although the causes are unknown, it seems that (1) the disappearance of microbiota may play a role in the increase of allergies and (2) exposure to bacterial infections during childhood decreases the incidence of allergies. Although several cell types are involved in the development of allergy, mast cells play a major role in orchestrating inflammation. Upon activation, mast cell secretory granules fuse with the plasma membrane, resulting in the release of a number of inflammatory mediators. In addition to allergy, mast cells contribute to the innate immune response against a variety of bacteria. This is accomplished through the secretion of cytokines and other soluble mediators. Interestingly, there is growing evidence that mast cells exposed to bacteria down-regulate degranulation in response to IgE/Allergen stimulation. This inhibitory effect seems to require direct contact between bacteria and mast cells, but the intracellular mechanism by which bacterial contact suppresses allergic responses is unknown. Here, we review different aspects of mast cell physiology and discuss hypotheses as to how bacteria may influence mast cell degranulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bach J. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.

    Article  PubMed  Google Scholar 

  2. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355:2226–35.

    Article  PubMed  CAS  Google Scholar 

  3. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454:445–54.

    Article  PubMed  CAS  Google Scholar 

  4. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis and atopic eczema: ISAAC. The Lancet 1998;351:1225–2.

    Google Scholar 

  5. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60.

    Article  PubMed  CAS  Google Scholar 

  6. Schaub B, Lauener R, von Mutius E. The many faces of the hygiene hypothesis. J Allergy Clin Immunol. 2006;117:969–77.

    Article  PubMed  Google Scholar 

  7. Sheikh A, Smeeth L, Hubbard R. There is no evidence of an inverse relationship between TH2-mediated atopy and TH1-mediated autoimmune disorders: lack of support for the hygiene hypothesis. J Allergy Clin Immunol. 2003;111:131–5.

    Article  PubMed  CAS  Google Scholar 

  8. Helin T, Haahtela S, Haahtela T. No effect of oral treatment with an intestinal bacterial strain, Lactobacillus rhamnosus, on birtch-pollen allergy: a placebo-controlled double-blind study. Allergy. 2002;57:243–6.

    Article  PubMed  CAS  Google Scholar 

  9. Martinez FD, Holt PG: Role of microbial burden in aetiology of allergy and asthma. The Lancet 1999;354 (suppl II):12–5.

    Google Scholar 

  10. Liew FY. TH1 and TH2 cells: a historical perspective. Nat Rev Immunol. 2002;2:55–60.

    Article  PubMed  CAS  Google Scholar 

  11. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med. 2002;8:567–73.

    Article  PubMed  CAS  Google Scholar 

  12. Abraham SN, St. John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10:440–52.

    Article  PubMed  CAS  Google Scholar 

  13. van Loveren H, Meade R, Askenase PW. An early component of delayed-type hypersensitivity mediated by T cells and mast cells. J Exp Med. 1983;157:1604–17.

    Article  PubMed  Google Scholar 

  14. Kobayashi T, Miura T, Haba T, Sato M, Serizawa I, Nagai H, Ishizaka K: An essential role of mast cells in the development of airway hyper responsiveness in a murine asthma model. J Immunol 2000;164:3855–1.

    Google Scholar 

  15. Fukuda K, Ohbayashi M, Morohoshi K, Zhang L, Liu F, Ono SJ: Critical role of IgE-dependent mast cell activation in a murine model of allergic conjunctivitis. J Allergy Clin Immunol 2009;124:827–3.

    Google Scholar 

  16. Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G, Kinkel SL, Hültner L, Röcken M. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med. 2000;192:1441–51.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K, Mizoguchi A, Honda Y, Nagai H, Narumiya S. Prostaglandin D2 as a mediator of allergic asthma. Science. 2000;287:2013–7.

    Article  PubMed  CAS  Google Scholar 

  18. Reuter S, Heinz A, Sieren M, Wiewrodt R, Gelfand EW, Stassen M, Buhl R, Taube C. Mast cell-derived tumour necrosis factor is essential for allergic airway disease. Eur Respir J. 2008;31:773–82.

    Article  PubMed  CAS  Google Scholar 

  19. Metcalfe DD, Baram D, Mekori YA: Mast cells. Physiol Rev 1997;77:1033–9.

    Google Scholar 

  20. Alvarez de Toledo G, Fernandez JM: Compound versus multigranular exocytosis in peritoneal mast cells. J Gen Physiol 1990;95:397–9.

    Google Scholar 

  21. Pickett JA, Edwardson JM. Compound exocytosis: mechanisms and functional significance. Traffic. 2006;7:109–16.

    Article  PubMed  CAS  Google Scholar 

  22. Ngoc LP, Gold DR, Tzianabos AO, Weiss ST, Celedón JC: Cytokines, allergy and asthma. Cur Opin Allergy Clin Immunol 2005;5:161–6.

    Google Scholar 

  23. Vincent-Schneider H, Théry C, Mazzeo D, Tenza D, Raposo G, Bonnerot C: Secretory granules of mast cells accumulate mature and immature MHC class II molecules. J Cell Sci 2000;114:323–4.

    Google Scholar 

  24. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C: Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mole Biol Cell 1997;8:2631–5.

    Google Scholar 

  25. Puri N, Roche PA. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. PNAS. 2008;105:2580–5.

    Article  PubMed  CAS  Google Scholar 

  26. Sagi-Eisenberg R. The mast cell: where endocytosis and regulated exocytosis meet. Immunol Rev. 2007;217:292–303.

    Article  PubMed  CAS  Google Scholar 

  27. Blank U, Cyprien B, Martin-Verdeaux S, Paumet F, Pombo I, River J, Roa M, Varin-Blank N. SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line. Mole Immunol. 2001;38:1341–5.

    Article  Google Scholar 

  28. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature. 1998;395:347–53.

    Article  PubMed  CAS  Google Scholar 

  29. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR: Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNARES. Nat Struct Biol 2002;9:107–1.

    Google Scholar 

  30. Söllner T, Whiteheart, SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE: SNAP receptors implicated in vesicle targeting and fusion. Nature 1993;362:318–4.

    Google Scholar 

  31. Fukuda R, McNew JA, Weber T, Parlati F, Engel T, nickel W, Rothman JE, Söllner TH: Functional architecture of an intracellular membrane t-SNARE. Nature 2000;407:198–2.

  32. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Söllner TH, Rothman JE: Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000;407:153–9.

    Google Scholar 

  33. Weber T, Zemelman BV, McNew, JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell 1998;92:759–2.

    Google Scholar 

  34. Paumet F, Rahimian V, Rothman JE. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. PNAS. 2004;101:3376–80.

    Article  PubMed  CAS  Google Scholar 

  35. Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D, Söllner TH, Rothman JE. Distinct SNARE complexes mediating membrane fusion in golgi transport based on combinatorial specificity. PNAS. 2002;99:5424–9.

    Article  PubMed  CAS  Google Scholar 

  36. Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and indentification of a vesicle-assocated membrane protein 8-containing secretory compartment. J Immunol. 2000;164:5850–7.

    PubMed  CAS  Google Scholar 

  37. Sander LE, Frank SPC, Bolat S, Blank U, Galli T, Bigalke H, Bischoff SC, Lorentz A. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur J Immunol. 2008;38:855–63.

    Article  PubMed  CAS  Google Scholar 

  38. Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J Biol Chem. 2005;280:6610–20.

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki K, Verma IM. Phosphorylation of SNAP-23 by IκB kinase 2 regulates mast cell degranulation. Cell. 2008;134:485–95.

    Article  PubMed  CAS  Google Scholar 

  40. Puri N, Roche PA. Ternary SNARE complexes are enriched in Lipid rafts during mast cell exocytosis. Traffic. 2006;7:1482–4.

    Article  PubMed  CAS  Google Scholar 

  41. Lippert U, Ferrari DM, Jahn R. Endobrevin/VAMP8 mediates exocytic release of hexosaminidase from rat basophilic leukemia cells. FEBS Lett. 2007;581:3479–84.

    Article  PubMed  CAS  Google Scholar 

  42. Salinas E, Quintanar-Stephano A, Córdova LE, Quintanar JL. Allergen-sensitization increases mast-cell expression of the exocytic proteins SNAP-23 and Syntaxin 4, which are involved in histamine secretion. J Invest Allergol Clin Immunol. 2008;18:366–71.

    CAS  Google Scholar 

  43. Guo Z, Turner C, Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 1998;94:537–8.

    Article  PubMed  CAS  Google Scholar 

  44. Galli T, Zahraoui A, Vaidyanathan RaposoVV, Min Tian G, Karin J, Niemann MH, Louvard D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mole Biol Cell. 1998;9:1437–48.

    CAS  Google Scholar 

  45. Hibi T, Hirashima N, Nakanishi M. Rat basophilic leukemia cells express syntaxin-3 and vamp-7 in granule membranes. Biochem Biophys Res Commun. 2000;271:36–41.

    Article  PubMed  CAS  Google Scholar 

  46. Chapman ER. How does synaptotagmin trigger neurotransmitter release? Ann Rev Biochem. 2008;77:615–41.

    Article  PubMed  CAS  Google Scholar 

  47. Baram D, Adachi R, Medalia O, Tuvim M, Dickey BF, Medori YA, Sagi-Eisenberg R. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J Exp Med. 1999;189:1649–57.

    Article  PubMed  CAS  Google Scholar 

  48. Haberman Y, Grimberg E, Fukuda M, Sagi-Eisenberg R. Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J Cell Sci. 2003;116:4307–18.

    Article  PubMed  CAS  Google Scholar 

  49. Kimura N, Shin-ichiro S, Mizunashi K, Ohtsu H, Kimura I. Synaptotagmin I expression in mast cells of normal human tissues, systemic mast cell disease and a human mast cell leukemia cell line. J Histochem Cytochem. 2001;49:341–5.

    Article  PubMed  CAS  Google Scholar 

  50. Meicoff E, Sansores-Garcia L, Gomez A, Moreira DC, Datta P, Thakur P, Petrova Y, Siddigi T, Murthy JN, Dickey BF, Heidelberger R, Adachi R. Synaptotagmin-2 controls regulated exocytosis but not other secretory responses of mast cells. J Biol Chem. 2009;284:19445–51.

    Article  Google Scholar 

  51. Wolfe PC, Chang E, Rivera J, Fewtrell C. Differential effects of the protein kinase C activator phorbol 12-myristate 13-acetate on calcium responses and secretion in adherent and suspended RBL-2H3 mucosal mast cells. J Biol Chem. 1996;271:6658–65.

    Article  PubMed  CAS  Google Scholar 

  52. Brose N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic. 2008;9:1403–13.

    Article  PubMed  CAS  Google Scholar 

  53. Giraudo CG, Eng WS, Melia TJ, Rothman JE. A clamping mechanism involved in SNARE-dependent exocytosis. Science. 2006;313:676–80.

    Article  PubMed  CAS  Google Scholar 

  54. Li F, Pincet F, Perez E, Giraudo CG, Tareste D, Rothman JE. Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic states. Nat Struct Mole Biol. 2011;18:941–7.

    Article  CAS  Google Scholar 

  55. Weniger KR. Complexin arrests a neighbor. Nat Struct Mole Biol. 2011;18:861–3.

    Article  Google Scholar 

  56. Kümmel D, Krishnakumar SS, Tadoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM. Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mole Biol. 2011;18:927–34.

    Article  Google Scholar 

  57. Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinish KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mole Biol. 2011;18:934–41.

    Article  CAS  Google Scholar 

  58. Tadokoro S, Nakanishi M, Hirashima N. Complexin II facilitates exocytic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J Cell Sci. 2005;118:2239–46.

    Article  PubMed  CAS  Google Scholar 

  59. Tadokoro S, Nakanishi M, Hirashima N. Complexin II regulates degranulation in RBL-2H3 cells by interacting with SNARE complex containing syntaxin-3. Cell Immunol. 2010;261:51–6.

    Article  PubMed  CAS  Google Scholar 

  60. Martin-Verdeaux S, Pombo I, Iannascoli B, Roa M, Varin-Blank N, Rivera J, Blank U. Evidence of a role for Munc18–2 and microtubules in mast cell granule exocytosis. J Cell Sci. 2002;116:325–34.

    Article  Google Scholar 

  61. Han GA, Malintan NT, Collins BM, Meunier FA, Sugita S. Munc18–1 as a key regulator of neurosecretion. J Neurochem. 2010;115:1–10.

    Article  PubMed  CAS  Google Scholar 

  62. Jahn R. Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage. Neuron. 2000;27:201–4.

    Article  PubMed  CAS  Google Scholar 

  63. Carr CM, Rizo J. At the junction of SNARE and SM protein function. Cur Opin Cell Biol. 2010;22:488–95.

    Article  CAS  Google Scholar 

  64. Nigam R, Sepulveda J, Tuvim M, Petrova Y, Adachi R, Dickey BF, Agrawal A. Expression and transcriptional regulation of Munc18 isoforms in mast cells. Biochim Biophys Acta. 2005;1728:77–83.

    PubMed  CAS  Google Scholar 

  65. Tadokoro S, Kurimoto T, Nakanishi M, Hirashima N. Munc18–2 regulates exocytic membrane fusion positively interacting with syntaxin-3 in RBL-2H3. Mol Immunol. 2007;44:3427–33.

    Article  PubMed  CAS  Google Scholar 

  66. Sutherland RE, Olsen JS, McKinstry A, Villalta SS, Wolters PJ. Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. J Immunol. 2008;181:5598–605.

    PubMed  CAS  Google Scholar 

  67. Xu X, Zhang D, Lyubynska N, Wolters PJ, Killeen NP, Baluk P, McDonald DM, Hawgood S, Caughey GH. Mast cells protect mice from mycoplasma pneumonia. Am J Res Crit Care Med. 2005;173:219–25.

    Article  Google Scholar 

  68. Gekara NO, Weiss S. Mast cells initiate early anti-listeria host defenses. Cell Microbiol. 2007;10:225–36.

    PubMed  Google Scholar 

  69. Dawicki W, Jawdat DW, Xu N, Marshall JS. Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol. 2010;184:2116–23.

    Article  PubMed  CAS  Google Scholar 

  70. Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature. 1996;381:77–80.

    Article  PubMed  CAS  Google Scholar 

  71. Malaviya R, Gao Z, Thankavel K, Anton van der Merwe P, Abraham SN. The mast cell tumor necrosis factor α response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecular CD48. PNAS. 1999;96:8110–5.

    Article  PubMed  CAS  Google Scholar 

  72. Shelburne CP, Nakano H, St. John AL, Chan C, McLachlan JB, Gunn MD, Staats HF, Abraham SN: Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe. 2009; 6:331–2.

  73. Cruse G, Fernandes VE, de Salort J, Pankhania D, Marinas MS, Brewin H, Andrew PW, Bradding P, Kadioglu A. Human lung mast cells mediate pneumococcal cell death in response to activation by pneumolysin. J Immunol. 2010;184:7108–15.

    Article  PubMed  CAS  Google Scholar 

  74. Padawer J, Fruhman GJ. Phagocytosis of zymosan particles by mast cells. Experientia. 1968;24:471–2.

    Article  PubMed  CAS  Google Scholar 

  75. Padawer J. Ingestion of colloidal gold by mast cells. Proc Soc Exp Biol Med. 1968;129:905–7.

    PubMed  CAS  Google Scholar 

  76. Malaviya R, Ross E, MacGregor JI, Ikeda T, Little JR, Jakschik BA, Abraham SN. Mast cell phagocytosis of FimH-expressing enterobacteria. J Immunol. 1994;152:1907–14.

    PubMed  CAS  Google Scholar 

  77. Flannagan RS, Cosío G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009;7:355–66.

    Article  PubMed  CAS  Google Scholar 

  78. Kinchen JM, Ravichandran KS. Phagosome maturation: going through the acid test. Nat Rev Mole Cell Biol. 2008;9:781–95.

    Article  CAS  Google Scholar 

  79. Stow JL, Manderson AP, Murray RZ. SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol. 2006;6:919–29.

    Article  PubMed  CAS  Google Scholar 

  80. Lin T, Gao Z, Arock M, Abraham SN. Internalization of FimH+ Escherichia coli by the human mast cell line (HMC-1 5C6) involves protein kinase C. J Leukoc Biol. 1999;66:1031–8.

    PubMed  CAS  Google Scholar 

  81. Lin T, Garduno R, Boudreau RTM, Issekutz AC. Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1α and β. J Immunol. 2002;169:4522–30.

    PubMed  CAS  Google Scholar 

  82. Muñoz S, Rivas-Santiago B, Enciso JA. Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scand J Immunol. 2009;70:256–63.

    Article  PubMed  Google Scholar 

  83. Abraham SN, Thankavel K, Malaviya R. Mast cells as modulators of host defense in the lung. Front Biosci. 1997;2:d78–87.

    PubMed  CAS  Google Scholar 

  84. Malaviya R, Ross E, Jakschik BA, Abraham SN. Mast cell degranulation induced by Type I fimbriated Escherichia coli in mice. J Clin Invest. 1994;93:1645–53.

    Article  PubMed  CAS  Google Scholar 

  85. Barbuti G, Moschioni M, Censini S, Covacci A, Montecucco C, Montemurro P. Streptococcus pneumoniae induces mast cell degranulation. Int J Med Microbiol. 2006;296:325–9.

    Article  PubMed  CAS  Google Scholar 

  86. Rocha-de-Souza CM, Berent-Maoz B, Mankuto D, Moses AE, Levi-Schaffer F. Human mast cell activation by Staphylococcus aureus: interleukin-8 and tumor necrosis factor alpha release and the role of toll-like receptor 2 and CD48 molecules. Infect Immun. 2008;76:4489–97.

    Article  PubMed  CAS  Google Scholar 

  87. Muñoz S, Hernández-Pando R, Abraham SN, Enciso JA. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48. J Immunol. 2003;170:5590–6.

    PubMed  Google Scholar 

  88. Hoek KL, Cassell GH, Duffer LB, Prescott Atkinson T. Mycoplasma pneumoniae-induced activation and cytokine production in rodent mast cells. J Allergy Clin Immunol. 2002;109:470–6.

    Article  PubMed  CAS  Google Scholar 

  89. Magerl M, Lammel V, Siebenhaar F, Zuberbier T, Metz M, Maurer M. Non-pathogenic commensal Escherichia coli bacteria can inhibit degranulation of mast cells. Exp Dermatol. 2008;17:427–35.

    Article  PubMed  Google Scholar 

  90. Schiffer C, Lalanne AI, Cassard L, Mancardi DA, Malbec O, Bruhns P, Dif F, Daëron Marc. A strain of lactobacillus casei inhibits the effector phase of immune inflammation. J Immunol. 2011;187:1–10.

    Article  Google Scholar 

  91. Kawahara T. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells. Animal Sci J. 2010;81:714–21.

    Article  CAS  Google Scholar 

  92. Harata G, He F, Takahashi K, Hosono A, Kawase M, Kubota A, Hiramatsu S, Kaminogawa S. Bifidobacterium suppresses IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. Microbiol Immunol. 2010;54:54–7.

    Article  PubMed  CAS  Google Scholar 

  93. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357:1076–9.

    Article  PubMed  Google Scholar 

  94. Kalliomäki M, Salminen S, Poussa T, Arvilommi H, Isolauri E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet. 2003;361:1869–71.

    Article  PubMed  Google Scholar 

  95. Blümer N, Sel S, Virna S, Patrascan CC, Zimmerman S, Herz U, Renz H, Garn H. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy. 2007;37:348–57.

    Article  PubMed  Google Scholar 

  96. Wassengerg J, Nutten S, Audran R, Barbier N, Aubert V, Moulin J, Mercenier A, Spertini F. Effect of Lactobacillus paracasei ST11 on nasal provocation test with grass pollen allergic rhinitis. Clin Exp Allergy. 2011;41:565–73.

    Article  Google Scholar 

  97. Feleszko W, Jaworska J, Rha R-D, Avagyan A, Jaudszus A, Ahrens B, Groneberg DA, Wahn U, Hamelmann E. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy. 2006;37:498–505.

    Article  Google Scholar 

  98. Kulka M, Fukuiski N, Rottem M, Mekori YA, Metcalfe DD. Mast cells, which interact with Escherichia coli, up-regulate genes associated with innate immunity and become less responsive to FcεRI-mediated activation. J Leukoc Biol. 2006;79:339–50.

    Article  PubMed  CAS  Google Scholar 

  99. Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, Miettinen M. Probiotic Lactobacillus rhamnosus downregulates FCERI and HRH4 expression in human mast cells. World J Gastroenterol. 2011;17:750–9.

    Article  PubMed  Google Scholar 

  100. Gonzalez-Expinosa C, Odom S, Olivera A, Peyton Hobson J, Eugina Cid Martinez M, Oliveiera-dos-Santos A, Barra L, Spiegel S, Penninger JM, Rivera J. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulations of the high affinity IgE receptor on mast cells. J Exp Med. 2003;197:1453–65.

    Article  Google Scholar 

  101. Chen K, Xiang Y, Yao X, Liu Y, Gong W, Yoshimura T, Wang JM. The active contribution of toll-like receptors to allergic airway inflammation. Int Immunopharmacol. 2011; doi:10.1016/j.intimp.2001.05.003:1-8.

  102. Barton GM, Kagan JC. A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9:535–42.

    Article  PubMed  CAS  Google Scholar 

  103. Rodríguez D, Keller AC, Faquim-Mauro EL, de Macedo M, Cunha FQ, Lefort J, Vargaftig BB, Russo M. Bacterial lipopolysaccharide signaling through toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol. 2003;171:1001–8.

    PubMed  Google Scholar 

  104. Velasco G, Campo M, Manrique OJ, Bellou A, He H, Arestides RSS, Schaub B, Perkins DL, Finn PW. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Res Cell Mole Biol. 2005;32:218–24.

    Article  CAS  Google Scholar 

  105. Fuchs B, Knothe S, Rochlitzer S, Nassimi M, Greweling M, Lauenstein H, Nassenstein C, Müller M, Ebensen T, Dittich A, Krug N, Guzman CA, Braun A. A toll-like receptor 2/6 agonist reduces allergic airway inflammation in chronic respiratory sensitisation to timothy grass pollen antigens. Int Arch Allergy Immunol. 2010;152:131–9.

    Article  PubMed  CAS  Google Scholar 

  106. Kubo Y, Fukuishi N, Yoshioka Y, Kawasoe Y, Iriguchi S, Imajo N, Yasui Y, Matsui N, Akagi M. Bacterial components regulate the expression of toll-like receptor 4 on human mast cells. Infalmmation Research. 2007;56:70–5.

    Article  CAS  Google Scholar 

  107. Yoshioka M, Fukuishi N, Iriguchi S, Ohsaki K, Yamanobe H, Inukai A, Kurihara D, Imajo N, Yasui Y, Matsui N, Tsujita T, Ishii A, Seya T, Takahama M, Akagi M. Lipoteichoic acid downregulates FcεRI expression on human mast cells through toll-like receptor 2. J Allergy Clin Immunol. 2007;120:452–61.

    Article  PubMed  CAS  Google Scholar 

  108. Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S. A TLR2 ligand supresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol. 2009;150:359–69.

    Article  PubMed  CAS  Google Scholar 

  109. Takeda K, Akira S. TLR signaling pathways. Sem Immunol. 2004;16:3–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Paumet laboratory for critical reading of this manuscript. We would also like to apologize to those authors whose work was not cited owing to space limitations. This research is indirectly supported by the National Institutes of Health (to F.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Paumet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesolowski, J., Paumet, F. The impact of bacterial infection on mast cell degranulation. Immunol Res 51, 215–226 (2011). https://doi.org/10.1007/s12026-011-8250-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8250-x

Keywords

Navigation