Skip to main content
Log in

Stage-specific functions of E-proteins at the β-selection and T-cell receptor checkpoints during thymocyte development

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The E-protein transcription factors E2A and HEB function in a lineage- and stage-specific manner to orchestrate many critical events throughout lymphocyte development. The function of E-proteins in both B- and T-lymphocyte development has been extensively studied through the use of single-gene knockout animals. Unlike B cells, which rely primarily on E2A alone, T cells are regulated by the combinatorial expression of both E2A and HEB. Therefore, many of the roles of E-proteins during T-cell development may be masked in single-gene knockout studies due to the compensatory function of E2A and HEB. More recently, our laboratory has established double-conditional knockout models to eliminate both E2A and HEB in a stage-specific manner throughout T-cell development. These models, in combination with other complimentary genetic approaches, have identified new E-protein functions at each of the two major T-cell developmental checkpoints. Here, we will discuss how E-proteins function to regulate the expression of T-cell receptor components and cell cycle at the β-selection checkpoint, and how they control positive selection, survival, and lineage-specific gene expression at the subsequent T-cell receptor checkpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpenter AC, Bosselut R. Decision checkpoints in the thymus. Nat Immunol. 2010;11(8):666–73.

    Article  PubMed  CAS  Google Scholar 

  2. Matthews AG, Oettinger MA. RAG: a recombinase diversified. Nat Immunol. 2009;10(8):817–21.

    Article  PubMed  CAS  Google Scholar 

  3. Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature. 1999;402(6759):255–62.

    Article  PubMed  CAS  Google Scholar 

  4. Zlotoff DA, Schwarz BA, Bhandoola A. The long road to the thymus: the generation, mobilization, and circulation of T-cell progenitors in mouse and man. Semin Immunopathol. 2008;30(4):371–82.

    Article  PubMed  Google Scholar 

  5. Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A. Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3-CD4-CD8- thymocyte differentiation. J Immunol. 1994;152(10):4783–92.

    PubMed  CAS  Google Scholar 

  6. Capone M, Hockett RD Jr, Zlotnik A. Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc Natl Acad Sci USA. 1998;95(21):12522–7.

    Article  PubMed  CAS  Google Scholar 

  7. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76.

    Article  PubMed  CAS  Google Scholar 

  8. Ladi E, Yin X, Chtanova T, Robey EA. Thymic microenvironments for T cell differentiation and selection. Nat Immunol. 2006;7(4):338–43.

    Article  PubMed  CAS  Google Scholar 

  9. von Boehmer H, Kisielow P. Negative selection of the T-cell repertoire: where and when does it occur? Immunol Rev. 2006;209:284–9.

    Article  Google Scholar 

  10. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989;56(5):777–83.

    Article  PubMed  CAS  Google Scholar 

  11. Wang D, Claus CL, Vaccarelli G, Braunstein M, Schmitt TM, Zuniga-Pflucker JC, et al. The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. J Immunol. 2006;177(1):109–19.

    PubMed  CAS  Google Scholar 

  12. Henthorn P, Kiledjian M, Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science. 1990;247(4941):467–70.

    Article  PubMed  CAS  Google Scholar 

  13. Hu JS, Olson EN, Kingston RE. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 1992;12(3):1031–42.

    PubMed  CAS  Google Scholar 

  14. Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000;20(2):429–40.

    Article  PubMed  CAS  Google Scholar 

  15. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990;61(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  16. Murre C. Helix-loop-helix proteins and lymphocyte development. Nat Immunol. 2005;6(11):1079–86.

    Article  PubMed  CAS  Google Scholar 

  17. Zhuang Y, Jackson A, Pan L, Shen K, Dai M. Regulation of E2A gene expression in B-lymphocyte development. Mol Immunol. 2004;40(16):1165–77.

    Article  PubMed  CAS  Google Scholar 

  18. Engel I, Johns C, Bain G, Rivera RR, Murre C. Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med. 2001;194(6):733–45.

    Article  PubMed  CAS  Google Scholar 

  19. David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, et al. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev. 2006;209:212–36.

    Article  PubMed  CAS  Google Scholar 

  20. Herblot S, Aplan PD, Hoang T. Gradient of E2A activity in B-cell development. Mol Cell Biol. 2002;22(3):886–900.

    Article  PubMed  CAS  Google Scholar 

  21. Pan L, Hanrahan J, Li J, Hale LP, Zhuang Y. An analysis of T cell intrinsic roles of E2A by conditional gene disruption in the thymus. J Immunol. 2002;168(8):3923–32.

    PubMed  CAS  Google Scholar 

  22. Bain G, Cravatt CB, Loomans C, Alberola-Ila J, Hedrick SM, Murre C. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat Immunol. 2001;2(2):165–71.

    Article  PubMed  CAS  Google Scholar 

  23. Koltsova EK, Ciofani M, Benezra R, Miyazaki T, Clipstone N, Zuniga-Pflucker JC, et al. Early growth response 1 and NF-ATc1 act in concert to promote thymocyte development beyond the beta-selection checkpoint. J Immunol. 2007;179(7):4694–703.

    PubMed  CAS  Google Scholar 

  24. Rivera RR, Johns CP, Quan J, Johnson RS, Murre C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity. 2000;12(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  25. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994;79(5):885–92.

    Article  PubMed  CAS  Google Scholar 

  26. Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994;79(5):875–84.

    Article  PubMed  CAS  Google Scholar 

  27. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol. 1997;17(8):4782–91.

    PubMed  CAS  Google Scholar 

  28. Barndt R, Dai MF, Zhuang Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol. 1999;163(6):3331–43.

    PubMed  CAS  Google Scholar 

  29. Zhuang Y, Cheng P, Weintraub H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol. 1996;16(6):2898–905.

    PubMed  CAS  Google Scholar 

  30. Taghon T, Yui MA, Pant R, Diamond RA, Rothenberg EV. Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity. 2006;24(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  31. Barndt RJ, Dai M, Zhuang Y. Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol Cell Biol. 2000;20(18):6677–85.

    Article  PubMed  CAS  Google Scholar 

  32. Sawada S, Littman DR. A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol Cell Biol. 1993;13(9):5620–8.

    PubMed  CAS  Google Scholar 

  33. Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M. Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol. 1998;18(6):3340–9.

    PubMed  CAS  Google Scholar 

  34. Wojciechowski J, Lai A, Kondo M, Zhuang Y. E2A and HEB Are Required to Block Thymocyte Proliferation Prior to Pre-TCR Expression. J Immunol. 2007;178(9):5717–26.

    PubMed  CAS  Google Scholar 

  35. Jia J, Kondo M, Zhuang Y. Germline transcription from T-cell receptor Vbeta gene is uncoupled from allelic exclusion. EMBO J. 2007;26(9):2387–99.

    Article  PubMed  CAS  Google Scholar 

  36. Jones ME, Kondo M, Zhuang Y. A tamoxifen inducible knock-in allele for investigation of E2A function. BMC Dev Biol. 2009;9:51.

    Article  PubMed  Google Scholar 

  37. Lazorchak AS, Wojciechowski J, Dai M, Zhuang Y. E2A promotes the survival of precursor and mature B lymphocytes. J Immunol. 2006;177(4):2495–504.

    PubMed  CAS  Google Scholar 

  38. von Boehmer H. Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol. 2005;5(7):571–7.

    Article  Google Scholar 

  39. Jia J, Dai M, Zhuang Y. E proteins are required to activate germline transcription of the TCR Vbeta8.2 gene. Eur J Immunol. 2008;38(10):2806–20.

    Article  PubMed  CAS  Google Scholar 

  40. Ryu CJ, Haines BB, Lee HR, Kang YH, Draganov DD, Lee M, et al. The T-cell receptor beta variable gene promoter is required for efficient V beta rearrangement but not allelic exclusion. Mol Cell Biol. 2004;24(16):7015–23.

    Article  PubMed  CAS  Google Scholar 

  41. Sleckman BP, Gorman JR, Alt FW. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu Rev Immunol. 1996;14:459–81.

    Article  PubMed  CAS  Google Scholar 

  42. Abarrategui I, Krangel MS. Regulation of T cell receptor-alpha gene recombination by transcription. Nat Immunol. 2006;7(10):1109–15.

    Article  PubMed  CAS  Google Scholar 

  43. Chen F, Rowen L, Hood L, Rothenberg EV. Differential transcriptional regulation of individual TCR V beta segments before gene rearrangement. J Immunol. 2001;166(3):1771–80.

    PubMed  CAS  Google Scholar 

  44. Ghosh JK, Romanow WJ, Murre C. Induction of a diverse T cell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J Exp Med. 2001;193(6):769–76.

    Article  PubMed  CAS  Google Scholar 

  45. Gottschalk LR, Leiden JM. Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol. 1990;10(10):5486–95.

    PubMed  CAS  Google Scholar 

  46. Ho IC, Yang LH, Morle G, Leiden JM. A T-cell-specific transcriptional enhancer element 3′ of C alpha in the human T-cell receptor alpha locus. Proc Natl Acad Sci USA. 1989;86(17):6714–8.

    Article  PubMed  CAS  Google Scholar 

  47. Takeda J, Cheng A, Mauxion F, Nelson CA, Newberry RD, Sha WC, et al. Functional analysis of the murine T-cell receptor beta enhancer and characteristics of its DNA-binding proteins. Mol Cell Biol. 1990;10(10):5027–35.

    PubMed  CAS  Google Scholar 

  48. Jolly CJ, O’Neill HC. Specific transcription of the unrearranged TCR V beta 8.2 gene in lymphoid tissues occurs independently of V(D)J rearrangement. Immunol Cell Biol. 1997;75(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  49. Agata Y, Tamaki N, Sakamoto S, Ikawa T, Masuda K, Kawamoto H, et al. Regulation of T cell receptor beta gene rearrangements and allelic exclusion by the helix-loop-helix protein, E47. Immunity. 2007;27(6):871–84.

    Article  PubMed  CAS  Google Scholar 

  50. Jones ME, Zhuang Y. Regulation of V(D)J recombination by E-protein transcription factors. Adv Exp Med Biol. 2009;650:148–56.

    Article  PubMed  Google Scholar 

  51. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol. 2000;1(2):138–44.

    Article  PubMed  CAS  Google Scholar 

  52. Takeuchi A, Yamasaki S, Takase K, Nakatsu F, Arase H, Onodera M, et al. E2A and HEB activate the pre-TCR alpha promoter during immature T cell development. J Immunol. 2001;167(4):2157–63.

    PubMed  CAS  Google Scholar 

  53. Petersson K, Ivars F, Sigvardsson M. The pT alpha promoter and enhancer are direct targets for transactivation by E box-binding proteins. Eur J Immunol. 2002;32(3):911–20.

    Article  PubMed  CAS  Google Scholar 

  54. Tremblay M, Herblot S, Lecuyer E, Hoang T. Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem. 2003;278(15):12680–7.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang W, Sommers CL, Burshtyn DN, Stebbins CC, DeJarnette JB, Trible RP, et al. Essential role of LAT in T cell development. Immunity. 1999;10(3):323–32.

    Article  PubMed  CAS  Google Scholar 

  56. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature. 1995;375(6534):795–8.

    Article  PubMed  CAS  Google Scholar 

  57. Engel I, Murre C. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J. 2004;23(1):202–11.

    Article  PubMed  CAS  Google Scholar 

  58. Hoffman ES, Passoni L, Crompton T, Leu TM, Schatz DG, Koff A, et al. Productive T-cell receptor beta-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 1996;10(8):948–62.

    Article  PubMed  CAS  Google Scholar 

  59. Tourigny MR, Mazel S, Burtrum DB, Petrie HT. T cell receptor (TCR)-beta gene recombination: dissociation from cell cycle regulation and developmental progression during T cell ontogeny. J Exp Med. 1997;185(9):1549–56.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 2005;16(4–5):513–33.

    Article  PubMed  CAS  Google Scholar 

  61. Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol. 2008;8(10):788–801.

    Article  PubMed  CAS  Google Scholar 

  62. Bain G, Quong MW, Soloff RS, Hedrick SM, Murre C. Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J Exp Med. 1999;190(11):1605–16.

    Article  PubMed  CAS  Google Scholar 

  63. Jones ME, Zhuang Y. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity. 2007;27(6):860–70.

    Article  PubMed  CAS  Google Scholar 

  64. Sleckman BP, Bardon CG, Ferrini R, Davidson L, Alt FW. Function of the TCR alpha enhancer in alphabeta and gammadelta T cells. Immunity. 1997;7(4):505–15.

    Article  PubMed  CAS  Google Scholar 

  65. Petrie HT, Livak F, Burtrum D, Mazel S. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J Exp Med. 1995;182(1):121–7.

    Article  PubMed  CAS  Google Scholar 

  66. Thompson SD, Pelkonen J, Hurwitz JL. First T cell receptor alpha gene rearrangements during T cell ontogeny skew to the 5′ region of the J alpha locus. J Immunol. 1990;145(7):2347–52.

    PubMed  CAS  Google Scholar 

  67. Wang F, Huang CY, Kanagawa O. Rapid deletion of rearranged T cell antigen receptor (TCR) Valpha-Jalpha segment by secondary rearrangement in the thymus: role of continuous rearrangement of TCR alpha chain gene and positive selection in the T cell repertoire formation. Proc Natl Acad Sci USA. 1998;95(20):11834–9.

    Article  PubMed  CAS  Google Scholar 

  68. Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, et al. Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Nat Immunol. 2002;3(5):469–76.

    Article  PubMed  Google Scholar 

  69. Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA. 2000;97(18):10132–7.

    Article  PubMed  CAS  Google Scholar 

  70. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science. 2000;288(5475):2369–73.

    Article  PubMed  CAS  Google Scholar 

  71. D’Cruz LM, Knell J, Fujimoto JK, Goldrath AW. An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nature Immunol. 2010;11(3):240–9.

    Article  Google Scholar 

  72. Xi H, Schwartz R, Engel I, Murre C, Kersh GJ. Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity. 2006;24(6):813–26.

    Article  PubMed  CAS  Google Scholar 

  73. Yucel R, Karsunky H, Klein-Hitpass L, Moroy T. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J Exp Med. 2003;197(7):831–44.

    Article  PubMed  CAS  Google Scholar 

  74. Leenders H, Whiffield S, Benoist C, Mathis D. Role of the forkhead transcription family member, FKHR, in thymocyte differentiation. Eur J Immunol. 2000;30(10):2980–90.

    Article  PubMed  CAS  Google Scholar 

  75. Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER, et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature. 2006;442(7100):299–302.

    Article  PubMed  CAS  Google Scholar 

  76. Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity. 2006;24(2):165–77.

    Article  PubMed  CAS  Google Scholar 

  77. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood. 2002;99(11):3892–904.

    Article  PubMed  CAS  Google Scholar 

  78. Plotkin J, Prockop SE, Lepique A, Petrie HT. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol. 2003;171(9):4521–7.

    PubMed  CAS  Google Scholar 

  79. Kee BL. E and ID proteins branch out. Nat Rev Immunol. 2009;9(3):175–84.

    Article  PubMed  CAS  Google Scholar 

  80. Wikstrom I, Forssell J, Penha-Goncalves MN, Bergqvist I, Holmberg D. A role for E2-2 at the DN3 stage of early thymopoiesis. Mol Immunol. 2008;45(11):3302–11.

    Article  PubMed  Google Scholar 

  81. Rivera R, Murre C. The regulation and function of the Id proteins in lymphocyte development. Oncogene. 2001;20(58):8308–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by NIH grants to Y.Z.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Elizabeth Jones or Yuan Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.E., Zhuang, Y. Stage-specific functions of E-proteins at the β-selection and T-cell receptor checkpoints during thymocyte development. Immunol Res 49, 202–215 (2011). https://doi.org/10.1007/s12026-010-8182-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8182-x

Keywords

Navigation