Skip to main content

Advertisement

Log in

A detrimental role for IgG and FcgammaR in Leishmania mexicana infection

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The intracellular protozoan parasite Leishmania causes leishmaniasis, which is the second biggest killer worldwide among parasitic diseases, after malaria. As drug therapy for leishmaniasis is toxic and resistance is growing, a vaccine is an important weapon against this disease. Unfortunately, no effective vaccine exists for any human parasitic infection. Worse yet, nearly all effective vaccines whose mechanisms are known work through the induction of protective antibodies. Leishmania mexicana causes primarily chronic cutaneous disease. Not only are antibodies not effective at killing Leishmania, as it hides inside the parasitophorous vacuole of the host cell, but new research indicates that IgG antibodies may be crucial in suppressing the host immune response by generating an immunosuppressive interleukin-10 response. IL-10 is able to decrease the needed Th1-generated IFN-γ and downregulates production of nitric oxide, a required effector mechanism of parasite killing. We have been studying the pathways that the host uses to partially control L. mexicana infection, which include STAT4, IFN-γ, and inducible nitric oxide synthase, but found that the IL-12 pathway is suppressed by IL-10. We are now studying the mechanisms by which IgG, bound to parasites, can induce IL-10 through FcγR ligation and how this suppresses a healing immune response. We are examining which IgG isotypes bind to which FcγRs and whether macrophages are the necessary source of IL-10 for chronic disease. Elucidation of these mechanisms may help us to design vaccines that will not induce antibody-mediated immunosuppressive IL-10 responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO. World health report: reducing risks, promoting healthy life. 2002. p. 186.

  2. WHO. WHO: leishmaniasis. 2005. http://www.who.int/leishmaniasis/en.

  3. WHO. TDR disease portfolio. 2004. http://www.who.int/tdr/diseases/default.htm.

  4. Hewitt S, Reyburn H, Ashford R, Rowland M. Anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: vertical distribution of cases in apartment blocks. Trans R Soc Trop Med Hyg. 1998;92:273–4.

    Article  PubMed  CAS  Google Scholar 

  5. Rowland M, Munir A, Durrani N, Noyes H, Reyburn H. An outbreak of cutaneous leishmaniasis in an Afghan refugee settlement in north-west Pakistan. Trans R Soc Trop Med Hyg. 1999;93:133–6.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts LJ, Handman E, Foote SJ. Science, medicine, and the future: Leishmaniasis. BMJ. 2000;321:801–4.

    Article  PubMed  CAS  Google Scholar 

  7. Magill AJ, Grogl M, Gasser RA Jr, Sun W, Oster CN. Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. N Engl J Med. 1993;328:1383–7.

    Article  PubMed  CAS  Google Scholar 

  8. Bryceson AD, Chulay JD, Ho M, Mugambii M, Were JB, Muigai R, et al. Visceral leishmaniasis unresponsive to antimonial drugs. I. Clinical and immunological studies. Trans R Soc Trop Med Hyg. 1985;79:700–4.

    Article  PubMed  CAS  Google Scholar 

  9. Jha TK, Sundar S, Thakur CP, Bachmann P, Karbwang J, Fischer C, et al. Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med. 1999;341:1795–800.

    Article  PubMed  CAS  Google Scholar 

  10. Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81:151–7.

    Article  PubMed  CAS  Google Scholar 

  11. Soto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, et al. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis. 2004;38:1266–72.

    Article  PubMed  CAS  Google Scholar 

  12. Roberts LS, Janovy J Jr, editors. Kinetaplasta: trypanosomes and their kin. In: Gerald D Schmidt and Larry S Roberts’ Foundations of parasitology. 6th ed. New York: McGraw Hill; 2000, p. 70–8.

  13. Preston PM, DuMonde DC. Immunology of clinical and experimental leishmaniasis. In: Cohen S, Sadun EH, editors. Immunology of parasitic infections. Oxford: Blackwell Scientific Publications; 1976. p. 168–202.

    Google Scholar 

  14. Locksley RM, Scott P. Helper T-cell subsets in mouse leishmaniasis: induction, expansion and effector function. Immunol Today. 1991;12:A58–61.

    Article  PubMed  CAS  Google Scholar 

  15. Childs GE, Lightner LK, McKinney L, Groves MG, Price EE, Hendricks LD. Inbred mice as model hosts for cutaneous leishmaniasis. I. Resistance and susceptibility to infection with Leishmania braziliensis, L. mexicana, and L. aethiopica. Ann Trop Med Parasitol. 1984;78:25–34.

    PubMed  CAS  Google Scholar 

  16. Buxbaum LU, Uzonna JE, Goldschmidt MH, Scott P. Control of New World cutaneous leishmaniasis is interleukin-12 independent but STAT4 dependent. Eur J Immunol. 2002;32:3206–15.

    Article  PubMed  CAS  Google Scholar 

  17. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375:408–11.

    Article  PubMed  CAS  Google Scholar 

  18. Diefenbach A, Schindler H, Donhauser N, Lorenz E, Laskay T, MacMicking J, et al. Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity. 1998;8:77–87.

    Article  PubMed  CAS  Google Scholar 

  19. Heinzel FP, Rerko RM, Ahmed F, Pearlman E. Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating leishmaniasis in normally resistant mice. J Immunol. 1995;155:730–9.

    PubMed  CAS  Google Scholar 

  20. Jones DE, Buxbaum LU, Scott P. IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J Immunol. 2000;165:364–72.

    PubMed  CAS  Google Scholar 

  21. Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med. 1993;177:1505–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jones D, Ellosso MM, Showe L, Williams D, Trinchieri G, Scott P. Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. Infect Immun. 1998;66:3818–24.

    PubMed  CAS  Google Scholar 

  23. Buxbaum LU, Scott P. Interleukin 10- and Fcgamma receptor-deficient mice resolve Leishmania mexicana lesions. Infect Immun. 2005;73:2101–8.

    Article  PubMed  CAS  Google Scholar 

  24. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  PubMed  CAS  Google Scholar 

  25. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081–95.

    Article  PubMed  CAS  Google Scholar 

  26. Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity. 1995;2:271–9.

    Article  PubMed  CAS  Google Scholar 

  27. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001;2:816–22.

    Article  PubMed  CAS  Google Scholar 

  28. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med. 2001;193:F5–9.

    Article  PubMed  CAS  Google Scholar 

  29. Uhlig HH, Coombes J, Mottet C, Izcue A, Thompson C, Fanger A, et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol. 2006;177:5852–60.

    PubMed  CAS  Google Scholar 

  30. Anderson CF, Oukka M, Kuchroo VJ, Sacks D. CD4+CD25-Foxp3- Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med. 2007;204:285–97.

    Article  PubMed  CAS  Google Scholar 

  31. Taga K, Mostowski H, Tosato G. Human interleukin-10 can directly inhibit T-cell growth. Blood. 1993;81:2964–71.

    PubMed  CAS  Google Scholar 

  32. Villegas EN, Wille U, Craig L, Linsley PS, Rennick DM, Peach R, et al. Blockade of costimulation prevents infection-induced immunopathology in interleukin-10-deficient mice. Infect Immun. 2000;68:2837–44.

    Article  PubMed  CAS  Google Scholar 

  33. Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP. IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol. 2001;31:2848–56.

    Article  PubMed  CAS  Google Scholar 

  34. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  PubMed  CAS  Google Scholar 

  35. Louzir H, Melby PC, Ben Salah A, Marrakchi H, Aoun K, Ben Ismail R, et al. Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major. J Infect Dis. 1998;177:1687–95.

    Article  PubMed  CAS  Google Scholar 

  36. Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA, et al. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest. 1993;91:1644–8.

    Article  PubMed  CAS  Google Scholar 

  37. Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, el-Hassan AM, et al. Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest. 1993;92:324–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166:1141–7.

    PubMed  CAS  Google Scholar 

  39. Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol. 2005;175:2517–24.

    PubMed  CAS  Google Scholar 

  40. Padigel UM, Alexander J, Farrell JP. The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis. J Immunol. 2003;171:3705–10.

    PubMed  CAS  Google Scholar 

  41. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420:502–7.

    Article  PubMed  CAS  Google Scholar 

  42. Thomas BN, Buxbaum LU. FcgammaRIII mediates immunoglobulin G-induced interleukin-10 and is required for chronic Leishmania mexicana lesions. Infect Immun. 2008;76:623–31.

    Article  PubMed  CAS  Google Scholar 

  43. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity. 2005;23:41–51.

    Article  PubMed  CAS  Google Scholar 

  44. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275–90.

    Article  PubMed  CAS  Google Scholar 

  45. Gerber JS, Mosser DM. Stimulatory and inhibitory signals originating from the macrophage Fcgamma receptors. Microbes Infect. 2001;3:131–9.

    Article  PubMed  CAS  Google Scholar 

  46. Snapper CM, Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236:944–7.

    Article  PubMed  CAS  Google Scholar 

  47. Berton MT, Uhr JW, Vitetta ES. Synthesis of germ-line gamma 1 immunoglobulin heavy-chain transcripts in resting B cells: induction by interleukin 4 and inhibition by interferon gamma. Proc Natl Acad Sci USA. 1989;86:2829–33.

    Article  PubMed  CAS  Google Scholar 

  48. Hazenbos WL, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity. 1996;5:181–8.

    Article  PubMed  CAS  Google Scholar 

  49. Hazenbos WL, Heijnen IA, Meyer D, Hofhuis FM, Renardel de Lavalette CR, Schmidt RE, et al. Murine IgG1 complexes trigger immune effector functions predominantly via Fc gamma RIII (CD16). J Immunol. 1998;161:3026–32.

    PubMed  CAS  Google Scholar 

  50. Meyer D, Schiller C, Westermann J, Izui S, Hazenbos WL, Verbeek JS, et al. FcgammaRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood. 1998;92:3997–4002.

    PubMed  CAS  Google Scholar 

  51. Fossati-Jimack L, Ioan-Facsinay A, Reininger L, Chicheportiche Y, Watanabe N, Saito T, et al. Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcgamma receptor III. J Exp Med. 2000;191:1293–302.

    Article  PubMed  CAS  Google Scholar 

  52. Taube C, Dakhama A, Rha YH, Takeda K, Joetham A, Park JW, et al. Transient neutrophil infiltration after allergen challenge is dependent on specific antibodies and Fc gamma III receptors. J Immunol. 2003;170:4301–9.

    PubMed  CAS  Google Scholar 

  53. Sadick MD, Raff HV. Differences in expression and exposure of promastigote and amastigote membrane molecules in Leishmania tropica. Infect Immun. 1985;47:395–400.

    PubMed  CAS  Google Scholar 

  54. Medina-Acosta E, Karess RE, Schwartz H, Russell DG. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989;37:263–73.

    Article  PubMed  CAS  Google Scholar 

  55. Winter G, Fuchs M, McConville MJ, Stierhof YD, Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994;107(Pt 9):2471–82.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was begun by the author in the lab of Dr. Phillip Scott and continued by Dr. Buxbaum in his own independent lab. We would like to thank Dr. Bolaji Thomas for his in vitro work on macrophages, and Andrea Rosso and Dr. Niansheng Chu for technical help with other aspects of the research. This work was supported by the University of Pennsylvania, by NIH (K08-AI01805), and by a Merit Review Award from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence U. Buxbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxbaum, L.U. A detrimental role for IgG and FcgammaR in Leishmania mexicana infection. Immunol Res 42, 197–209 (2008). https://doi.org/10.1007/s12026-008-8074-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8074-5

Keywords

Navigation