Skip to main content
Log in

Inducing the T cell fates required for immunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A naïve T cell recruited into an immune response receives its critical inductive signals in the lymph node. The selected T cell must then produce cellular progeny empowered with new functions. Differentiated effector cells divide and migrate to infected tissues with an imprint of the instructions delivered to their progenitor. Some progeny of a selected naïve T cell, however, must remain undifferentiated and persist as lymph node-dwelling memory cells to replace and fortify defense should the intruder return. The integration of cell division, differentiation, diversification, and four-dimensional navigation make the clonal burst of a T cell in reaction to microbial invasion an exciting problem of developmental biology, cellular adaptation to environmental cues, and the propagation of signaling pathways through space and time. Epigenetic control of gene expression and an ancient cellular diversification mechanism called asymmetric cell division have recently been proposed to explain how a selected T cell can accomplish its imposing tasks. Future investigations will be directed toward understanding the mechanisms that allow a selected T cell to produce daughter T cells that are different, that are capable of remembering their inductive history, and that fulfill the demand for acute function and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819–26.

    Article  PubMed  CAS  Google Scholar 

  2. Cemerski S, Shaw A. Immune synapses in T-cell activation. Curr Opin Immunol. 2006;18:298–304.

    Article  PubMed  CAS  Google Scholar 

  3. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.

    Article  PubMed  CAS  Google Scholar 

  4. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82–6.

    Article  PubMed  CAS  Google Scholar 

  5. Depoil D, Zaru R, Guiraud M, Chauveau A, Harriague J, Bismuth G, et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity. 2005;22:185–94.

    Article  PubMed  CAS  Google Scholar 

  6. Lin J, Miller MJ, Shaw AS. The c-SMAC: sorting it all out (or in). J Cell Biol. 2005;170:177–82.

    Article  PubMed  CAS  Google Scholar 

  7. Reiner SL. Development in motion: helper T cells at work. Cell. 2007;129:33–6.

    Article  PubMed  CAS  Google Scholar 

  8. Reiner SL, Sallusto F, Lanzavecchia A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science. 2007;317:622–5.

    Article  PubMed  CAS  Google Scholar 

  9. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity. 1998;9:229–37.

    Article  PubMed  CAS  Google Scholar 

  10. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.

    Article  PubMed  CAS  Google Scholar 

  11. Intlekofer AM, John Wherry E, Reiner SL. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol Rev. 2006;211:203–13.

    Article  PubMed  CAS  Google Scholar 

  12. Reiner SL. Immunity and the animation of the genome. Immunity. 2003;19:775–80.

    Article  PubMed  CAS  Google Scholar 

  13. Reiner SL. Epigenetic control in the immune response. Hum Mol Genet. 2005;14(Spec No 1):R41–6.

    Article  PubMed  CAS  Google Scholar 

  14. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;27:203–13.

    Article  PubMed  CAS  Google Scholar 

  15. Obar JJ, Khanna KM, Lefrancois L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity. 2008;28:859–69.

    Article  PubMed  CAS  Google Scholar 

  16. Chang JT, Reiner Sl. Protection one cell thick. Immunity. 2007;27:832–4.

    Article  PubMed  CAS  Google Scholar 

  17. Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol. 2003;4:579–85.

    Article  PubMed  CAS  Google Scholar 

  18. Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427:154–9.

    Article  PubMed  CAS  Google Scholar 

  19. Miller MJ, Wei SH, Parker I, Cahalan MD. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 2002;296:1869–73.

    Article  PubMed  CAS  Google Scholar 

  20. Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science. 2002;296:1873–6.

    Article  PubMed  Google Scholar 

  21. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science. 2007;315:1687–91.

    Article  PubMed  CAS  Google Scholar 

  22. Fearon DT, Manders P, Wagner SD. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science. 2001;293:248–50.

    Article  PubMed  CAS  Google Scholar 

  23. Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103:3304–9.

    Article  PubMed  CAS  Google Scholar 

  24. Catron DM, Rusch LK, Hataye J, Itano AA, Jenkins MK. CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J Exp Med. 2006;203:1045–54.

    Article  PubMed  CAS  Google Scholar 

  25. D’Souza WN, Hedrick SM. Cutting edge. latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol. 2006;177:777–81.

    PubMed  CAS  Google Scholar 

  26. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity. 2007;27:985–97.

    Article  PubMed  CAS  Google Scholar 

  27. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  PubMed  CAS  Google Scholar 

  28. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science. 2002;295:338–42.

    Article  PubMed  CAS  Google Scholar 

  29. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302:1041–3.

    Article  PubMed  CAS  Google Scholar 

  30. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236–44.

    Article  PubMed  CAS  Google Scholar 

  31. Intlekofer AM, Banerjee A, Takemoto N, Gordon SM, Dejong CS, Shin H, et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science. 2008;321:408–11.

    Article  PubMed  CAS  Google Scholar 

  32. Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop JK, et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med. 2007;204:2015–21.

    Article  PubMed  CAS  Google Scholar 

  33. Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL. Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol. 2006;177:7515–9.

    PubMed  CAS  Google Scholar 

  34. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity. 2007;27:281–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am grateful to members of my laboratory and to the NIH and the Abramson Family for support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Reiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, S.L. Inducing the T cell fates required for immunity. Immunol Res 42, 160–165 (2008). https://doi.org/10.1007/s12026-008-8054-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8054-9

Keywords

Navigation