Skip to main content

Advertisement

Log in

Molecular signatures distinguishing active from latent tuberculosis in peripheral blood mononuclear cells, after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD) or Candida: a preliminary report

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Purified protein derivative (PPD) or tuberculin skin testing is used to identify infected individuals with Mycobacterium tuberculosis (Mtb) and to assess cell-mediated immunity to Mtb. In the present study, we compared PBMC cultures in the presence of tuberculin or Candida antigens using cytokine bead arrays and RNA microarrays. Measurements of different cytokines and chemokines in supernatants of PMBC cultures in the presence of PPD showed increased levels of interferon (IFN)-γ in active tuberculosis infection (ATBI) and latent TB infected (LTBI) compared to controls, and increased levels of TNF-α in ATBI compared with LTBI. Also, we found increase of IL-6 in cultures of PPD positive and controls but not in the cultures with Candida. We also report the molecular signature of tuberculosis infection, in ATBI patients, the following genes were found to be up-regulated and absent in LTBI individuals: two kinases (JAK3 and p38MAPK), four interleukins (IL-7, IL-2, IL-6, and IFNβ1), a chemokine (HCC-4) a chemokine receptor (CxCR5), two interleukin receptors (IL-1R2 and IL-18R1), and three additional ones (TRAF5, Smad2, CIITA, and NOS2A). By contrast, IL-17 and IGFBP3 were significantly up-regulated in LTBI. And, STAT4, GATA3, Fra-1, and ICOS were down-regulated in ATBI but absent in LTBI. Conversely, TLR-10, IL-15, DORA, and IKK-β were down-regulated in LTBI but not in ATBI. Interestingly, the majority of the up-regulated genes found in ATBI were found in cultures stimulated with tuberculin (PPD) or Candida antigens, suggesting that these pathogens stimulate similar immunological pathways. We believe that the molecular signature distinguishing active from latent tuberculosis infection may require using cytokine bead arrays along with RNA microarrays testing cell cultures at different times following in vitro proliferation assays using several bacterial antigens and PPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin FC, Chen YC, Chen FJ, Chang SC. Cytokines and fibrinolytic enzymes in tuberculous and parapneumonic effusions. Clin Immunol. 2005;116:166–73.

    Article  PubMed  CAS  Google Scholar 

  2. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000;161:1376–95.

    Google Scholar 

  3. Rosendahl A, Pardali E, Speletas M, Ten Dijke P, Heldin CH, Sideras P. Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol. 2002;27:160–9.

    PubMed  CAS  Google Scholar 

  4. Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol. 2004;110:2–12.

    Article  PubMed  CAS  Google Scholar 

  5. Lin PL, Plessner HL, Voitenok NN, Flynn JL. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc. 2007;12:22–5.

    Article  PubMed  CAS  Google Scholar 

  6. Berrington WR, Hawn TR. Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter? Immunol Rev. 2007;219:167–86.

    Article  PubMed  CAS  Google Scholar 

  7. Ransohoff RM. The chemokine system in neuroinflammation: an update. J Infect Dis. 2002;186 Suppl 2:S152–6.

    Article  PubMed  CAS  Google Scholar 

  8. Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol. 2007;178:7222–34.

    PubMed  CAS  Google Scholar 

  9. Mogga SJ, Mustafa T, Sviland L, Nilsen R. In situ expression of CD40, CD40L (CD154), IL–12, TNF-alpha, IFN-gamma and TGF-beta1 in murine lungs during slowly progressive primary tuberculosis. Scand J Immunol. 2003;58:327–34.

    Article  PubMed  CAS  Google Scholar 

  10. Cocito C, Maes H. Immunological relatedness of the protective mechanisms against tuberculosis and cancer. Eur J Clin Invest. 1998;28:1–12.

    Article  PubMed  CAS  Google Scholar 

  11. Aly S, Laskay T, Mages J, Malzan A, Lang R, Ehlers S. Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol. 2007;212:295–305.

    Article  PubMed  CAS  Google Scholar 

  12. Vergne I, Chua J, Singh SB, Deretic V: Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20:367–94.

    Article  PubMed  CAS  Google Scholar 

  13. Deretic V, Vergne I, Chua J, Master S, Singh SB, Fazio JA, Kyei G. Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV. Cell Microbiol. 2004;6:999–1009.

    Article  PubMed  CAS  Google Scholar 

  14. Stewart GR, Patel J, Robertson BD, Rae A, Young DB. Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog. 2005;1:269–78.

    Article  PubMed  CAS  Google Scholar 

  15. Verbon A, Juffermans N, Van Deventer SJ, Speelman P, Van Deutekom H, Van Der Poll T. Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment. Clin Exp Immunol. 1999;115:110–3.

    Article  PubMed  CAS  Google Scholar 

  16. Casarini M, Ameglio F, Alemanno L, Zangrilli P, Mattia P, Paone G, et al. Cytokine levels correlate with a radiologic score in active pulmonary tuberculosis. Am J Respir Crit Care Med. 1999;159:143–8.

    PubMed  CAS  Google Scholar 

  17. Morosini M, Meloni F, Marone Bianco A, Paschetto E, Uccelli M, Pozzi E, et al. The assessment of IFN-gamma and its regulatory cytokines in the plasma and bronchoalveolar lavage fluid of patients with active pulmonary tuberculosis. Int J Tuberc Lung Dis. 2003;7:994–1000.

    PubMed  CAS  Google Scholar 

  18. Handzel ZT, Barak V, Altman Y, Bibi H, Lidgi M, Iancovici-Kidon M, et al. Increased Th1 and Th2 type cytokine production in patients with active tuberculosis. Isr Med Assoc J. 2007;9:479–83.

    PubMed  CAS  Google Scholar 

  19. Stern JN, Keskin DB, Barteneva N, Zuniga J, Yunis EJ, Ahmed AR. Possible role of natural killer cells in pemphigus vulgaris—preliminary observations. Clin Exp Immunol. 2008;152:472–81.

    PubMed  CAS  Google Scholar 

  20. Stern JN, Illes Z, Reddy J, Keskin DB, Sheu E, Fridkis-Hareli M, et al. Amelioration of proteolipid protein 139-151-induced encephalomyelitis in SJL mice by modified amino acid copolymers and their mechanisms. Proc Natl Acad Sci USA. 2004;101:11743–8.

    Article  PubMed  CAS  Google Scholar 

  21. Illes Z, Stern JN, Reddy J, Waldner H, Mycko MP, Brosnan CF, et al. Modified amino acid copolymers suppress myelin basic protein 85–99-induced encephalomyelitis in humanized mice through different effects on T cells. Proc Natl Acad Sci USA. 2004;101:11749–54.

    Article  PubMed  CAS  Google Scholar 

  22. Illes Z, Stern JN, Keskin DB, Reddy J, Brosnan CF, Waldner H, et al. Copolymer effects on microglia and T cells in the central nervous system of humanized mice. Eur J Immunol. 2005;35:3683–93.

    Article  PubMed  CAS  Google Scholar 

  23. Keskin DB, Stern JN, Fridkis-Hareli M, Razzaque Ahmed A. Cytokine profiles in pemphigus vulgaris patients treated with intravenous immunoglobulins as compared to conventional immunosuppressive therapy. Cytokine. 2008;41:315–21.

    Article  PubMed  CAS  Google Scholar 

  24. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129.

    Article  PubMed  CAS  Google Scholar 

  25. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity. 2007;27:505–17.

    Article  PubMed  CAS  Google Scholar 

  26. Mori T, Harada N, Higuchi K, Sekiya Y, Uchimura K, Shimao T. Waning of the specific interferon-gamma response after years of tuberculosis infection. Int J Tuberc Lung Dis. 2007;11:1021–5.

    PubMed  CAS  Google Scholar 

  27. Berktas M, Guducuoglu H, Bozkurt H, Onbasi KT, Kurtoglu MG, Andic S. Change in serum concentrations of interleukin-2 and interferon-gamma during treatment of tuberculosis. J Int Med Res. 2004;32:324–30.

    PubMed  CAS  Google Scholar 

  28. Natarajan P, Narayanan S. Mycobacterium tuberculosis H37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition by N-acetyl-L-cysteine. FEMS Immunol Med Microbiol. 2007;50:309–18.

    Article  PubMed  CAS  Google Scholar 

  29. Romieu-Mourez R, Francois M, Boivin MN, Stagg J, Galipeau J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol. 2007;179:1549–58.

    PubMed  CAS  Google Scholar 

  30. Meade KG, Gormley E, Park SD, Fitzsimons T, Rosa GJ, Costello E, et al. Gene expression profiling of peripheral blood mononuclear cells (PBMC) from Mycobacterium bovis infected cattle after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD). Vet Immunol Immunopathol. 2006;113:73–89.

    Article  PubMed  CAS  Google Scholar 

  31. Thacker TC, Palmer MV, Waters WR. Associations between cytokine gene expression and pathology in Mycobacterium bovis infected cattle. Vet Immunol Immunopathol. 2007;119:204–13.

    Article  PubMed  CAS  Google Scholar 

  32. Maeurer MJ, Trinder P, Hommel G, Walter W, Freitag K, Atkins D, et al. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect Immun. 2000;68:2962–70.

    Article  PubMed  CAS  Google Scholar 

  33. Romano M, D’Souza S, Adnet PY, Laali R, Jurion F, Palfliet K, et al. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine. 2006;24:3353–64.

    Article  PubMed  CAS  Google Scholar 

  34. Tantawichien T, Young LS, Bermudez LE. Interleukin-7 induces anti-Mycobacterium avium activity in human monocyte-derived macrophages. J Infect Dis. 1996;174:574–82.

    PubMed  CAS  Google Scholar 

  35. Jung SB, Yang CS, Lee JS, Shin AR, Jung SS, Son JW, et al. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun. 2006;74:2686–96.

    Article  PubMed  CAS  Google Scholar 

  36. Hosokawa R, Urata MM, Ito Y, Bringas P Jr, Chai Y. Functional significance of Smad2 in regulating basal keratinocyte migration during wound healing. J Invest Dermatol. 2005;125:1302–9.

    Article  PubMed  CAS  Google Scholar 

  37. Choi HS, Rai PR, Chu HW, Cool C, Chan ED. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med. 2002;166:178–86.

    Article  PubMed  Google Scholar 

  38. Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, et al. Nitric oxide modulates interleukin-1beta and tumor necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am J Respir Crit Care Med. 2000;161:192–9.

    PubMed  CAS  Google Scholar 

  39. Wang CH, Lin HC, Liu CY, Huang KH, Huang TT, Yu CT, et al. Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2001;5:283–91.

    PubMed  CAS  Google Scholar 

  40. Sciorati C, Rovere P, Ferrarini M, Paolucci C, Heltai S, Vaiani R, et al. Generation of nitric oxide by the inducible nitric oxide synthase protects gamma delta T cells from Mycobacterium tuberculosis-induced apoptosis. J Immunol. 1999;163:1570–6.

    PubMed  CAS  Google Scholar 

  41. Lockhart E, Green AM, Flynn JL. IL–17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177:4662–9.

    PubMed  CAS  Google Scholar 

  42. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8:369–77.

    Article  PubMed  CAS  Google Scholar 

  43. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.

    Article  PubMed  CAS  Google Scholar 

  44. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol. 2007;178:3786–96.

    PubMed  CAS  Google Scholar 

  45. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8:639–46.

    Article  PubMed  CAS  Google Scholar 

  46. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.N.H.S. was partially supported by Stern Investigative Services (SIS Inc.). E.J.Y. was supported by the Public Health Service (PHS) grants HL29583 and from the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) HL59838 and fuds form the Department of Cancer Immunology and AIDs of the Dana Farber Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel N. H. Stern or Edmond J. Yunis.

Additional information

Stern, Keskin, and Zuniga contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, J.N.H., Keskin, D.B., Romero, V. et al. Molecular signatures distinguishing active from latent tuberculosis in peripheral blood mononuclear cells, after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD) or Candida: a preliminary report. Immunol Res 45, 1–12 (2009). https://doi.org/10.1007/s12026-008-8024-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8024-2

Keywords

Navigation