Skip to main content

Advertisement

Log in

DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Lymphocyte maturation requires generation of a large diversity of antigen receptors, which involves somatic rearrangements at the antigen receptor genes in a process termed V(D)J recombination. Upon encountering specific antigens, B-lymphocytes undergo rearrangements in the constant region of the immunoglobulin genes to optimize immune responses in a process called class switch recombination. Activated B-cells also undergo somatic hypermutation in the variable regions of the immunoglobulin genes to enhance their antigenic affinity. These somatic events are initiated by the infliction of DNA lesions within the antigen receptor genes that are strictly confined to a specific developmental window and cell-cycle stage. DNA lesions are then repaired by one of the general DNA repair mechanisms, such as non-homologous end-joining. Mutations in key factors of these pathways lead to the interruption of these processes and immunodeficiency, making it possible to study the mechanisms of cellular response to DNA lesions and their repair. This review briefly summarizes some of the recently developed animal models with focus on current advances in the understanding of the mechanism of DNA end-joining activities, and its role in the maintenance of genomic stability and the prevention of tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tonegawa S. Somatic generation of antibody diversity. Nature 1983;302(5909):575–81.

    PubMed  CAS  Google Scholar 

  2. Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989;59(6):1035–48.

    PubMed  CAS  Google Scholar 

  3. Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990;248(4962):1517–23.

    PubMed  CAS  Google Scholar 

  4. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 2000;18:495–527.

    PubMed  CAS  Google Scholar 

  5. Eastman QM, Leu TM, Schatz DG. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 1996;380(6569):85–8.

    PubMed  CAS  Google Scholar 

  6. Zhu C, Roth DB. Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 1995;2(1):101–12.

    PubMed  CAS  Google Scholar 

  7. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995;83(3):387–95.

    PubMed  CAS  Google Scholar 

  8. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992;68(5):869–77.

    PubMed  CAS  Google Scholar 

  9. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68(5):855–67.

    PubMed  CAS  Google Scholar 

  10. Schwarz K, Gauss GH, Ludwig L, et al. RAG mutations in human B cell-negative SCID. Science 1996;274(5284):97–9.

    PubMed  CAS  Google Scholar 

  11. van Gent DC, Ramsden DA, Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 1996;85(1):107–13.

    PubMed  Google Scholar 

  12. Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev 1993;7(12B):2520–32.

    PubMed  CAS  Google Scholar 

  13. Zhu C, Bogue MA, Lim DS, Hasty P, Roth DB. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 1996;86(3):379–89.

    PubMed  CAS  Google Scholar 

  14. Roth DB, Nakajima PB, Menetski JP, Bosma MJ, Gellert M. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 1992;69(1):41–53.

    PubMed  CAS  Google Scholar 

  15. Stavnezer J. Antibody class switching. Adv Immunol 1996;61:79–146.

    PubMed  CAS  Google Scholar 

  16. Manis JP, Tian M, Alt FW. Mechanism and control of class-switch recombination. Trends Immunol 2002;23(1):31–9.

    PubMed  CAS  Google Scholar 

  17. Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2005;86:43–112.

    PubMed  CAS  Google Scholar 

  18. Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 2004;4(7):541–52.

    PubMed  CAS  Google Scholar 

  19. Neuberger MS, Di Noia JM, Beale RC, Williams GT, Yang Z, Rada C. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 2005;5(2):171–8.

    PubMed  CAS  Google Scholar 

  20. Goodman MF, Scharff MD, Romesberg FE. AID-initiated purposeful mutations in immunoglobulin genes. Adv Immunol 2007;94:127–55.

    PubMed  CAS  Google Scholar 

  21. Muramatsu M, Nagaoka H, Shinkura R, Begum NA, Honjo T. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv Immunol 2007;94:1–36.

    Article  PubMed  CAS  Google Scholar 

  22. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999;274(26):18470–6.

    PubMed  CAS  Google Scholar 

  23. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102(5):553–63.

    PubMed  CAS  Google Scholar 

  24. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000;102(5):565–75.

    PubMed  CAS  Google Scholar 

  25. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002;418(6893):99–103.

    PubMed  CAS  Google Scholar 

  26. Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 2003;100(7):4102–7.

    PubMed  CAS  Google Scholar 

  27. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003;422(6933):726–30.

    PubMed  CAS  Google Scholar 

  28. Yu K, Huang FT, Lieber MR. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J Biol Chem 2004;279(8):6496–500.

    PubMed  CAS  Google Scholar 

  29. Tian M, Alt FW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 2000;275(31):24163–72.

    PubMed  CAS  Google Scholar 

  30. Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004;430(7003):992–8.

    PubMed  CAS  Google Scholar 

  31. Ramiro A, San-Martin BR, McBride K, Jankovic M, Barreto V, Nussenzweig A, Nussenzweig MC. The role of activation-induced deaminase in antibody diversification and chromosome translocations. Adv Immunol 2007;94:75–107.

    Article  PubMed  CAS  Google Scholar 

  32. Chaudhuri J, Basu U, Zarrin A, et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 2007;94:157–214.

    PubMed  CAS  Google Scholar 

  33. Xue K, Rada C, Neuberger MS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/- ung-/- mice. J Exp Med 2006;203(9):2085–94.

    PubMed  CAS  Google Scholar 

  34. Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J Exp Med 2007;204(1):181–90.

    PubMed  CAS  Google Scholar 

  35. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 2002;12(20):1748–55.

    PubMed  CAS  Google Scholar 

  36. Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 2003;4(10):1023–8.

    PubMed  CAS  Google Scholar 

  37. Ehrenstein MR, Neuberger MS. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J 1999;18(12):3484–90.

    PubMed  CAS  Google Scholar 

  38. Schrader CE, Edelmann W, Kucherlapati R, Stavnezer J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J Exp Med 1999;190(3):323–30.

    PubMed  CAS  Google Scholar 

  39. Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 2005;202(4):561–8.

    PubMed  CAS  Google Scholar 

  40. Wuerffel RA, Du J, Thompson RJ, Kenter AL. Ig Sgamma3 DNA-specifc double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J Immunol 1997;159(9):4139–44.

    PubMed  CAS  Google Scholar 

  41. Catalan N, Selz F, Imai K, Revy P, Fischer A, Durandy A. The block in immunoglobulin class switch recombination caused by activation-induced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch mu region. J Immunol 2003;171(5):2504–9.

    PubMed  CAS  Google Scholar 

  42. Petersen S, Casellas R, Reina-San-Martin B, et al. AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 2001;414(6864):660–5.

    PubMed  CAS  Google Scholar 

  43. Zarrin AA, Del Vecchio C, Tseng E, Gleason M, Zarin P, Tian M, Alt FW. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 2007;315(5810):377–81.

    PubMed  CAS  Google Scholar 

  44. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004;18(1):1–11.

    PubMed  Google Scholar 

  45. Wilson TM, Vaisman A, Martomo SA, et al. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med 2005;201(4):637–45.

    PubMed  CAS  Google Scholar 

  46. Reina-San-Martin B, Difilippantonio S, Hanitsch L, Masilamani RF, Nussenzweig A, Nussenzweig MC. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med 2003;197(12):1767–78.

    PubMed  CAS  Google Scholar 

  47. Brandt VL, Roth DB. A recombinase diversified: new functions of the RAG proteins. Curr Opin Immunol 2002;14(2):224–9.

    PubMed  CAS  Google Scholar 

  48. Agrawal A, Schatz DG. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 1997;89(1):43–53.

    PubMed  CAS  Google Scholar 

  49. Hiom K, Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell 1998;1(7):1011–9.

    PubMed  CAS  Google Scholar 

  50. Yarnell Schultz H, Landree MA, Qiu JX, Kale SB, Roth DB. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell 2001;7(1):65–75.

    PubMed  CAS  Google Scholar 

  51. Huye LE, Purugganan MM, Jiang MM, Roth DB. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 2002;22(10):3460–73.

    PubMed  CAS  Google Scholar 

  52. Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev 2002;16(15):1934–49.

    PubMed  CAS  Google Scholar 

  53. Qiu JX, Kale SB, Yarnell Schultz H, Roth DB. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell 2001;7(1):77–87.

    PubMed  CAS  Google Scholar 

  54. Lee GS, Neiditch MB, Salus SS, Roth DB. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 2004;117(2):171–84.

    PubMed  CAS  Google Scholar 

  55. Corneo B, Wendland RL, Deriano L, et al. Rag mutations reveal robust alternative end joining. Nature 2007;449(7161):483–6.

    PubMed  CAS  Google Scholar 

  56. Wuerffel R, Wang L, Grigera F, et al. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007;27(5):711–22.

    PubMed  CAS  Google Scholar 

  57. Dudley DD, Manis JP, Zarrin AA, Kaylor L, Tian M, Alt FW. Internal IgH class switch region deletions are position-independent and enhanced by AID expression. Proc Nal Acad Sci USA 2002;99(15):9984–9.

    CAS  Google Scholar 

  58. Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med 2002;195(4):529–34.

    PubMed  CAS  Google Scholar 

  59. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem 2004;73:39–85.

    PubMed  CAS  Google Scholar 

  60. Carney JP, Maser RS, Olivares H, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998;93(3):477–86.

    PubMed  CAS  Google Scholar 

  61. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005;308(5721):551–4.

    PubMed  CAS  Google Scholar 

  62. D’Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev 2002;3(5):317–27.

    CAS  Google Scholar 

  63. Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle 2007;6(8):931–42.

    PubMed  CAS  Google Scholar 

  64. Stracker TH, Theunissen JW, Morales M, Petrini JH. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair 2004;3(8–9):845–54.

    PubMed  CAS  Google Scholar 

  65. Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999;99(6):577–87.

    PubMed  CAS  Google Scholar 

  66. Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW, Petrini JH. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 2003;12(6):1511–23.

    PubMed  CAS  Google Scholar 

  67. Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93(3):467–76.

    PubMed  CAS  Google Scholar 

  68. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH. A murine model of Nijmegen breakage syndrome. Curr Biol 2002;12(8):648–53.

    PubMed  CAS  Google Scholar 

  69. Paull TT, Gellert M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998;1(7):969–79.

    PubMed  CAS  Google Scholar 

  70. Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002;108(6):781–94.

    PubMed  CAS  Google Scholar 

  71. Rooney S, Sekiguchi J, Zhu C, et al. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 2002;10(6):1379–90.

    PubMed  CAS  Google Scholar 

  72. Lahdesmaki A, Taylor AM, Chrzanowska KH, Pan-Hammarstrom Q. Delineation of the role of the Mre11 complex in class switch recombination. J Biol Chem 2004;279(16):16479–87.

    PubMed  Google Scholar 

  73. Pan-Hammarstrom Q, Dai S, Zhao Y, van Dijk-Hard IF, Gatti RA, Borresen-Dale AL, Hammarstrom L. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol 2003;170(7):3707–16.

    PubMed  Google Scholar 

  74. Reina-San-Martin B, Nussenzweig MC, Nussenzweig A, Difilippantonio S. Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proc Natl Acad Sci USA 2005;102(5):1590–5.

    PubMed  CAS  Google Scholar 

  75. Kracker S, Bergmann Y, Demuth I, et al. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci USA 2005;102(5):1584–9.

    PubMed  CAS  Google Scholar 

  76. Abraham RT. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair 2004;3(8–9):883–7.

    PubMed  CAS  Google Scholar 

  77. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421(6922):499–506.

    PubMed  CAS  Google Scholar 

  78. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007;316(5828):1160–6.

    PubMed  CAS  Google Scholar 

  79. Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 2002;16(2):159–64.

    PubMed  CAS  Google Scholar 

  80. Xu Y. ATM in lymphoid development and tumorigenesis. Adv Immunol 1999;72:179–89.

    PubMed  CAS  Google Scholar 

  81. Winrow CJ, Pankratz DG, Vibat CR, et al. Aberrant recombination involving the granzyme locus occurs in Atm-/- T-cell lymphomas. Hum Mol Genet 2005;14(18):2671–84.

    PubMed  CAS  Google Scholar 

  82. Liyanage M, Weaver Z, Barlow C, Coleman A, Pankratz DG, Anderson S, Wynshaw-Boris A, Ried T. Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 2000;96(5):1940–6.

    PubMed  CAS  Google Scholar 

  83. Borghesani PR, Alt FW, Bottaro A, et al. Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci USA 2000;97(7):3336–41.

    PubMed  CAS  Google Scholar 

  84. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996;10(19):2411–22.

    PubMed  CAS  Google Scholar 

  85. Hsieh CL, Arlett CF, Lieber MR. V(D)J recombination in ataxia telangiectasia, Bloom’s syndrome, and a DNA ligase I-associated immunodeficiency disorder. J Biol Chem 1993;268(27):20105–9.

    PubMed  CAS  Google Scholar 

  86. Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996;86(1):159–71.

    PubMed  CAS  Google Scholar 

  87. Huang CY, Sharma GG, Walker LM, Bassing CH, Pandita TK, Sleckman BP. Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. J Exp Med 2007;204(6):1371–81.

    PubMed  CAS  Google Scholar 

  88. Lumsden JM, McCarty T, Petiniot LK, et al. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med 2004;200(9):1111–21.

    PubMed  CAS  Google Scholar 

  89. Callen E, Jankovic M, Difilippantonio S, et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 2007;130(1):63–75.

    PubMed  CAS  Google Scholar 

  90. Pan-Hammarstrom Q, Lahdesmaki A, Zhao Y, et al. Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation. J Exp Med 2006;203(1):99–110.

    PubMed  Google Scholar 

  91. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 2004;200(9):1103–10.

    PubMed  CAS  Google Scholar 

  92. Jankovic M, Nussenzweig A, Nussenzweig MC. Antigen receptor diversification and chromosome translocations. Nat Immunol 2007;8(8):801–8.

    PubMed  CAS  Google Scholar 

  93. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair 2004;3(8–9):959–67.

    PubMed  CAS  Google Scholar 

  94. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003;5(7):675–9.

    PubMed  CAS  Google Scholar 

  95. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999;146(5):905–16.

    PubMed  CAS  Google Scholar 

  96. Chen HT, Bhandoola A, Difilippantonio MJ, et al. Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 2000;290(5498):1962–5.

    PubMed  CAS  Google Scholar 

  97. Bassing CH, Chua KF, Sekiguchi J, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA 2002;99(12):8173–8.

    PubMed  CAS  Google Scholar 

  98. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science 2002;296(5569):922–7.

    PubMed  CAS  Google Scholar 

  99. Bassing CH, Alt FW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 2004;3(2):149–53.

    PubMed  CAS  Google Scholar 

  100. Morales JC, Xia Z, Lu T, et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J Biol Chem 2003;278(17):14971–7.

    PubMed  CAS  Google Scholar 

  101. Ward IM, Reina-San-Martin B, Olaru A, et al. 53BP1 is required for class switch recombination. J Cell Biol 2004;165(4):459–64.

    PubMed  CAS  Google Scholar 

  102. Manis JP, Morales JC, Xia Z, Kutok JL, Alt FW, Carpenter PB. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 2004;5(5):481–7.

    PubMed  CAS  Google Scholar 

  103. Mochan TA, Venere M, DiTullio RA Jr., Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair 2004;3(8–9):945–52.

    PubMed  CAS  Google Scholar 

  104. Reina-San-Martin B, Chen J, Nussenzweig A, Nussenzweig MC. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol 2007;37(1):235–9.

    PubMed  CAS  Google Scholar 

  105. Huyen Y, Zgheib O, Ditullio RA Jr., et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 2004;432(7015):406–11.

    PubMed  CAS  Google Scholar 

  106. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003;421(6926):952–6.

    PubMed  CAS  Google Scholar 

  107. Lou Z, Chini CC, Minter-Dykhouse K, Chen J. Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem 2003;278(16):13599–602.

    PubMed  CAS  Google Scholar 

  108. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003;421(6926):961–6.

    PubMed  CAS  Google Scholar 

  109. Lou Z, Minter-Dykhouse K, Franco S, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 2006;21(2):187–200.

    PubMed  CAS  Google Scholar 

  110. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. RNF8 Transduces the DNA-damage signal via Histone Ubiquitylation and checkpoint protein assembly. Cell 2007;131(5):901–14.

    PubMed  CAS  Google Scholar 

  111. Kolas NK, Chapman JR, Nakada S, et al. Orchestration of the DNA-damage response by the RNF8 Ubiquitin Ligase. Science 2007;318(5856):1637–40.

    PubMed  CAS  Google Scholar 

  112. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. RNF8 Ubiquitylates Histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007;131(5):887–900.

    PubMed  CAS  Google Scholar 

  113. Couedel C, Mills KD, Barchi M, et al. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 2004;18(11):1293–304.

    PubMed  CAS  Google Scholar 

  114. Mills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev 2003;194:77–95.

    PubMed  CAS  Google Scholar 

  115. Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003;23(16):5706–15.

    PubMed  CAS  Google Scholar 

  116. Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17(18):5497–508.

    PubMed  CAS  Google Scholar 

  117. Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001;20(40):5572–9.

    PubMed  CAS  Google Scholar 

  118. Burma S, Chen BP, Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 2006;5(9–10):1042–8.

    PubMed  CAS  Google Scholar 

  119. Sekiguchi JM, Ferguson DO. DNA double-strand break repair: a relentless hunt uncovers new prey. Cell 2006;124(2):260–2.

    PubMed  CAS  Google Scholar 

  120. Frank KM, Sekiguchi JM, Seidl KJ, et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998;396(6707):173–7.

    PubMed  CAS  Google Scholar 

  121. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 1998;9(3):367–76.

    PubMed  CAS  Google Scholar 

  122. Gu Y, Seidl KJ, Rathbun GA, et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 1997;7(5):653–65.

    PubMed  CAS  Google Scholar 

  123. Zha S, Alt FW, Cheng HL, Brush JW, Li G. Defective DNA repair and increased genomic instability in Cernunnos-XLF-deficient murine ES cells. Proc Natl Acad Sci USA 2007;104(11):4518–23.

    PubMed  CAS  Google Scholar 

  124. Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 1999;23(2):194–8.

    PubMed  CAS  Google Scholar 

  125. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 1993;72(1):131–42.

    PubMed  CAS  Google Scholar 

  126. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301(5900):527–30.

    PubMed  CAS  Google Scholar 

  127. Taccioli GE, Amatucci AG, Beamish HJ, et al. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 1998;9(3):355–66.

    PubMed  CAS  Google Scholar 

  128. Bogue MA, Jhappan C, Roth DB. Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci USA 1998;95(26):15559–64.

    PubMed  CAS  Google Scholar 

  129. Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, Chen DJ, Li GC. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci USA 1999;96(4):1403–8.

    PubMed  CAS  Google Scholar 

  130. Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F, Fischer A, de Villartay JP. A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 1998;188(4):627–34.

    PubMed  CAS  Google Scholar 

  131. Roth DB, Zhu C, Gellert M. Characterization of broken DNA molecules associated with V(D)J recombination. Proc Natl Acad Sci USA 1993;90(22):10788–92.

    PubMed  CAS  Google Scholar 

  132. Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair 2004;3(8–9):817–26.

    PubMed  CAS  Google Scholar 

  133. Rooney S, Chaudhuri J, Alt FW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev 2004;200:115–31.

    PubMed  CAS  Google Scholar 

  134. Casellas R, Nussenzweig A, Wuerffel R, et al. Ku80 is required for immunoglobulin isotype switching. EMBO J 1998;17(8):2404–11.

    PubMed  CAS  Google Scholar 

  135. Manis JP, Gu Y, Lansford R, Sonoda E, Ferrini R, Davidson L, Rajewsky K, Alt FW. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J Exp Med 1998;187(12):2081–9.

    PubMed  CAS  Google Scholar 

  136. Hodgkin PD, Lee JH, Lyons AB. B cell differentiation and isotype switching is related to division cycle number. J Exp Med 1996;184(1):277–81.

    PubMed  CAS  Google Scholar 

  137. Kiefer K, Oshinsky J, Kim J, Nakajima PB, Bosma GC, Bosma MJ. The catalytic subunit of DNA-protein kinase (DNA-PKcs) is not required for Ig class-switch recombination. Proc Natl Acad Sci USA 2007;104(8):2843–8.

    PubMed  CAS  Google Scholar 

  138. Manis JP, Dudley D, Kaylor L, Alt FW. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 2002;16(4):607–17.

    PubMed  CAS  Google Scholar 

  139. Rooney S, Alt FW, Sekiguchi J, Manis JP. Artemis-independent functions of DNA-dependent protein kinase in Ig heavy chain class switch recombination and development. Proc Natl Acad Sci USA 2005;102(7):2471–5.

    PubMed  CAS  Google Scholar 

  140. Pan-Hammarstrom Q, Jones AM, Lahdesmaki A, Zhou W, Gatti RA, Hammarstrom L, Gennery AR, Ehrenstein MR. Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. J Exp Med 2005;201(2):189–94.

    PubMed  Google Scholar 

  141. Yan CT, Boboila C, Souza EK, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 2007;449(7161):478–82.

    PubMed  CAS  Google Scholar 

  142. Gao Y, Sun Y, Frank KM, et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 1998;95(7):891–902.

    PubMed  CAS  Google Scholar 

  143. Soulas-Sprauel P, Le Guyader G, Rivera-Munoz P, Abramowski V, Olivier-Martin C, Goujet-Zalc C, Charneau P, de Villartay JP. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J Exp Med 2007;204(7):1717–27.

    PubMed  CAS  Google Scholar 

  144. Roth DB, Wilson JH. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 1986;6(12):4295–304.

    PubMed  CAS  Google Scholar 

  145. Verkaik NS, Esveldt-van Lange RE, van Heemst D, Bruggenwirth HT, Hoeijmakers JH, Zdzienicka MZ, van Gent DC. Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. Eur J Immunol 2002;32(3):701–9.

    PubMed  CAS  Google Scholar 

  146. Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 2005;65(10):4020–30.

    PubMed  CAS  Google Scholar 

  147. Audebert M, Salles B, Calsou P. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 2004;279(53):55117–26.

    PubMed  CAS  Google Scholar 

  148. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001;20(40):5580–94.

    PubMed  CAS  Google Scholar 

  149. Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 2004;428(6978):88–93.

    PubMed  CAS  Google Scholar 

  150. Martin A, Scharff MD. Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci USA 2002;99(19):12304–8.

    PubMed  CAS  Google Scholar 

  151. Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 2002;296(5575):2033–6.

    PubMed  CAS  Google Scholar 

  152. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002;109 Suppl:S45–55.

    PubMed  CAS  Google Scholar 

  153. Jiang H, Chang FC, Ross AE, Lee J, Nakayama K, Desiderio S. Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 2005;18(6):699–709.

    PubMed  CAS  Google Scholar 

  154. Lin WC, Desiderio S. V(D)J recombination and the cell cycle. Immunol Today 1995;16(6):279–89.

    PubMed  CAS  Google Scholar 

  155. Matei IR, Gladdy RA, Nutter LM, Canty A, Guidos CJ, Danska JS. ATM deficiency disrupts Tcra locus integrity and the maturation of CD4 + CD8 +  thymocytes. Blood 2007;109(5):1887–96.

    PubMed  CAS  Google Scholar 

  156. Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006;209:142–58.

    PubMed  CAS  Google Scholar 

  157. Van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C. DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 2007;204(6):1453–61.

    PubMed  CAS  Google Scholar 

  158. Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R, Ried T, Nussenzweig A. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002;196(4):469–80.

    PubMed  CAS  Google Scholar 

  159. Zhu C, Mills KD, Ferguson DO, et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002;109(7):811–21.

    PubMed  CAS  Google Scholar 

  160. Ramiro AR, Jankovic M, Eisenreich T, et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 2004;118(4):431–8.

    PubMed  CAS  Google Scholar 

  161. Franco S, Gostissa M, Zha S, et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell 2006;21(2):201–14.

    PubMed  CAS  Google Scholar 

  162. Ramiro AR, Jankovic M, Callen E, et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 2006;440(7080):105–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Melanie Dujka, Omid Tavana and Drs. Phillip Carpenter and Cara Benjamin for their critical review of this manuscript. Our work is supported by the American Cancer Society and the National Cancer Institute (to C.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puebla-Osorio, N., Zhu, C. DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol Res 41, 103–122 (2008). https://doi.org/10.1007/s12026-008-8015-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8015-3

Keywords

Navigation