Skip to main content
Log in

The effector to memory transition of CD4 T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The small number of antigen-specific memory CD4 T cells surviving long-term after antigen or pathogen challenge are often characterized by a surprising degree of phenotypic and functional heterogeneity. We here propose that the immune system has evolved to express this diversity in memory T-cell populations, in order to provide flexibility in recall responses, via a rapid transition from heterogeneous effector cells into correspondingly heterogeneous memory cells. Little attention has been paid to another important transition—from resting memory cell to re-activated effector. We would suggest that superior functional attributes of secondary effectors arising from memory CD4 T cells, as compared to primary effectors arising from naïve precursors, play an important and underappreciated role in protective secondary immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cantor H, Boyse EA. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med 1975;141:1376–89.

    Article  PubMed  CAS  Google Scholar 

  2. Dialynas DP, Quan ZS, Wall KA, Pierres A, Quintans J, Loken MR, Pierres M, Fitch FW. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol 1983;131:2445–51.

    PubMed  CAS  Google Scholar 

  3. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 2002;168:1528–32.

    PubMed  CAS  Google Scholar 

  4. Whitmire JK, Benning N, Whitton JL. Precursor frequency, nonlinear proliferation, and functional maturation of virus-specific CD4+ T cells. J Immunol 2006;176:3028–36.

    PubMed  CAS  Google Scholar 

  5. Jelley-Gibbs DM, Lepak NM, Yen M, Swain SL. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J Immunol 2000;165:5017–26.

    PubMed  CAS  Google Scholar 

  6. London CA, Perez VL, Abbas AK. Functional characteristics and survival requirements of memory CD4+ T lymphocytes in vivo. J Immunol 1999;162:766–73.

    PubMed  CAS  Google Scholar 

  7. De Boer RJ, Homann D, Perelson AS. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol 2003;171:3928–35.

    PubMed  Google Scholar 

  8. Cauley LS, Cookenham T, Miller TB, Adams PS, Vignali KM, Vignali DA, Woodland DL. Cutting edge: virus-specific CD4+ memory T cells in nonlymphoid tissues express a highly activated phenotype. J Immunol 2002;169:6655–8.

    PubMed  CAS  Google Scholar 

  9. Homann D, Teyton L, Oldstone MB. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 2001;7:913–9.

    Article  PubMed  CAS  Google Scholar 

  10. Schiemann M, Busch V, Linkemann K, Huster KM, Busch DH. Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur J Immunol 2003;33:2875–85.

    Article  PubMed  CAS  Google Scholar 

  11. MacLeod M, Kwakkenbos MJ, Crawford A, Brown S, Stockinger B, Schepers K, Schumacher T, Gray D. CD4 memory T cells survive and proliferate but fail to differentiate in the absence of CD40. J Exp Med 2006;203:897–906.

    Article  PubMed  CAS  Google Scholar 

  12. Harbertson J, Biederman E, Bennett KE, Kondrack RM, Bradley LM. Withdrawal of stimulation may initiate the transition of effector to memory CD4 cells. J Immunol 2002;168:1095–102.

    PubMed  CAS  Google Scholar 

  13. McKinstry KK, Golech S, Lee WH, Huston G, Weng NP, Swain SL. Rapid default transition of CD4 T cell effectors to functional memory cells. J Exp Med 2007;204:2199–211.

    Article  PubMed  CAS  Google Scholar 

  14. Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 2006;312:114–6.

    Article  PubMed  CAS  Google Scholar 

  15. Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD. Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 2007;204:951–61.

    Article  PubMed  CAS  Google Scholar 

  16. Varga SM, Welsh RM. Stability of virus-specific CD4+ T cell frequencies from acute infection into long term memory. J Immunol 1998;161:367–74.

    PubMed  CAS  Google Scholar 

  17. Bradley LM, Duncan DD, Yoshimoto K, Swain SL. Memory effectors: a potent, IL-4-secreting helper T cell population that develops in vivo after restimulation with antigen. J Immunol 1993;150:3119–30.

    PubMed  CAS  Google Scholar 

  18. Powell TJ, Brown DM, Hollenbaugh JA, Charbonneau T, Kemp RA, Swain SL, Dutton RW. CD8+ T cells responding to influenza infection reach and persist at higher numbers than CD4+ T cells independently of precursor frequency. Clin Immunol 2004;113:89–100.

    Article  PubMed  CAS  Google Scholar 

  19. Topham DJ, Doherty PC. Longitudinal analysis of the acute Sendai virus-specific CD4+ T cell response and memory. J Immunol 1998;161:4530–5.

    PubMed  CAS  Google Scholar 

  20. Badovinac VP, Messingham KA, Hamilton SE, Harty JT. Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 2003;170:4933–42.

    PubMed  CAS  Google Scholar 

  21. Bingaman AW, Patke DS, Mane VR, Ahmadzadeh M, Ndejembi M, Bartlett ST, Farber DL. Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. Eur J Immunol 2005;35:3173–86.

    Article  PubMed  CAS  Google Scholar 

  22. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708–12.

    Article  PubMed  CAS  Google Scholar 

  23. Kassiotis G, Stockinger B. Anatomical heterogeneity of memory CD4+ T cells due to reversible adaptation to the microenvironment. J Immunol 2004;173:7292–8.

    PubMed  CAS  Google Scholar 

  24. Swain SL, Agrewala JN, Brown DM, Jelley-Gibbs DM, Golech S, Huston G, Jones SC, Kamperschroer C, Lee WH, McKinstry KK, Roman E, Strutt T, Weng NP. CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenza. Immunol Rev 2006;211:8–22.

    Article  PubMed  CAS  Google Scholar 

  25. Badovinac VP, Haring JS, Harty JT. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 2007;26:827–41.

    Article  PubMed  CAS  Google Scholar 

  26. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, Roederer M, Seder RA. Multifunctional T(H)1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007;13:843–50.

    Article  PubMed  CAS  Google Scholar 

  27. Robertson JM, MacLeod M, Marsden VS, Kappler JW, Marrack P. Not all CD4+ memory T cells are long lived. Immunol Rev 2006;211:49–57.

    Article  PubMed  CAS  Google Scholar 

  28. Gray D. A role for antigen in the maintenance of immunological memory. Nat Rev Immunol 2002;2:60–5.

    Article  PubMed  CAS  Google Scholar 

  29. Gray D, Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med 1991;174:969–74.

    Article  PubMed  CAS  Google Scholar 

  30. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002;420:502–7.

    Article  PubMed  CAS  Google Scholar 

  31. Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J Exp Med 2005;202:697–706.

    Article  PubMed  CAS  Google Scholar 

  32. Jelley-Gibbs DM, Dibble JP, Brown DM, Strutt TM, McKinstry KK, Swain SL. Persistent depots of influenza antigen fail to induce a cytotoxic CD8 T cell response. J Immunol 2007;178:7563–70.

    PubMed  CAS  Google Scholar 

  33. Catron DM, Rusch LK, Hataye J, Itano AA, Jenkins MK. CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J Exp Med 2006;203:1045–54.

    Article  PubMed  CAS  Google Scholar 

  34. North RJ, Berche PA, Newborg MF. Immunologic consequences of antibiotic-induced abridgement of bacterial infection: effect on generation and loss of protective T cells and level of immunologic memory. J Immunol 1981;127:342–6.

    PubMed  CAS  Google Scholar 

  35. D'Souza WN, Hedrick SM. Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol 2006;177:777–81.

    PubMed  Google Scholar 

  36. Hu H, Huston G, Duso D, Lepak N, Roman E, Swain SL. CD4(+) T cell effectors can become memory cells with high efficiency and without further division. Nat Immunol 2001;2:705–10.

    Article  PubMed  CAS  Google Scholar 

  37. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002;2:251–62.

    Article  PubMed  CAS  Google Scholar 

  38. Dooms H, Abbas AK. Control of CD4+ T-cell memory by cytokines and costimulators. Immunol Rev 2006;211:23–38.

    Article  PubMed  CAS  Google Scholar 

  39. Dooms H, Wolslegel K, Lin P, Abbas AK. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells. J Exp Med 2007;204:547–57.

    Article  PubMed  CAS  Google Scholar 

  40. Li J, Huston G, Swain SL. IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 2003;198:1807–15.

    Article  PubMed  CAS  Google Scholar 

  41. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM. Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 2003;198:1797–806.

    Article  PubMed  CAS  Google Scholar 

  42. Soroosh P, Ine S, Sugamura K, Ishii N. OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. J Immunol 2006;176:5975–87.

    PubMed  CAS  Google Scholar 

  43. Salek-Ardakani S, Croft M. Regulation of CD4 T cell memory by OX40 (CD134). Vaccine 2006;24:872–83.

    Article  PubMed  CAS  Google Scholar 

  44. Weinberg AD, Evans DE, Thalhofer C, Shi T, Prell RA. The generation of T cell memory: a review describing the molecular and cellular events following OX40 (CD134) engagement. J Leukoc Biol 2004;75:962–72.

    Article  PubMed  CAS  Google Scholar 

  45. Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol 1998;16:201–23.

    Article  PubMed  CAS  Google Scholar 

  46. Garcia S, DiSanto J, Stockinger B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 1999;11:163–71.

    Article  PubMed  CAS  Google Scholar 

  47. Ahmadzadeh M, Hussain SF, Farber DL. Effector CD4 T cells are biochemically distinct from the memory subset: evidence for long-term persistence of effectors in vivo. J Immunol 1999;163:3053–63.

    PubMed  CAS  Google Scholar 

  48. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274:94–6.

    Article  PubMed  CAS  Google Scholar 

  49. Zinkernagel RM, Hengartner H. Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 2006;211:310–9.

    Article  PubMed  CAS  Google Scholar 

  50. Budd RC, Cerottini JC, MacDonald HR. Phenotypic identification of memory cytolytic T lymphocytes in a subset of Lyt-2+ cells. J Immunol 1987;138:1009–13.

    PubMed  CAS  Google Scholar 

  51. Budd RC, Cerottini JC, Horvath C, Bron C, Pedrazzini T, Howe RC, MacDonald HR. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol 1987;138:3120–9.

    PubMed  CAS  Google Scholar 

  52. Bottomly K, Luqman M, Greenbaum L, Carding S, West J, Pasqualini T, Murphy DB. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol 1989;19:617–23.

    Article  PubMed  CAS  Google Scholar 

  53. Lee WT, Vitetta ES. The differential expression of homing and adhesion molecules on virgin and memory T cells in the mouse. Cell Immunol 1991;132:215–22.

    Article  PubMed  CAS  Google Scholar 

  54. Swain SL, Bradley LM. Helper T cell memory: more questions than answers. Semin Immunol 1992;4:59–68.

    PubMed  CAS  Google Scholar 

  55. Farber DL, Ahmadzadeh M. Dissecting the complexity of the memory T cell response. Immunol Res 2002;25:247–59.

    Article  PubMed  CAS  Google Scholar 

  56. Min B, Paul WE. Endogenous proliferation: burst-like CD4 T cell proliferation in lymphopenic settings. Semin Immunol 2005;17:201–7.

    Article  PubMed  CAS  Google Scholar 

  57. Jameson SC. T cell homeostasis: keeping useful T cells alive and live T cells useful. Semin Immunol 2005;17:231–7.

    Article  PubMed  CAS  Google Scholar 

  58. Boyman O, Purton JF, Surh CD, Sprent J. Cytokines and T-cell homeostasis. Curr Opin Immunol 2007;19:320–6.

    Article  PubMed  CAS  Google Scholar 

  59. Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol 2000;164:2338–46.

    PubMed  CAS  Google Scholar 

  60. London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000;164:265–72.

    PubMed  CAS  Google Scholar 

  61. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol 1999;163:1315–20.

    PubMed  CAS  Google Scholar 

  62. Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG. Early programming of T cell populations responding to bacterial infection. J Immunol 2000;165:6833–9.

    PubMed  CAS  Google Scholar 

  63. Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2001;2:415–22.

    PubMed  CAS  Google Scholar 

  64. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007;19:281–6.

    Article  PubMed  CAS  Google Scholar 

  65. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  66. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192:1545–52.

    Article  PubMed  CAS  Google Scholar 

  67. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 2001;193:1373–81.

    Article  PubMed  CAS  Google Scholar 

  68. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;192:1553–62.

    Article  PubMed  CAS  Google Scholar 

  69. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006;25:195–201.

    Article  PubMed  CAS  Google Scholar 

  70. Roman E, Miller E, Harmsen A, Wiley J, Von Andrian UH, Huston G, Swain SL. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 2002;196:957–68.

    Article  PubMed  CAS  Google Scholar 

  71. Agrewala JN, Brown DM, Lepak NM, Duso D, Huston G, Swain SL. Unique ability of activated CD4+ T cells but not rested effectors to migrate to non-lymphoid sites in the absence of inflammation. J Biol Chem 2007;282:6106–15.

    Article  PubMed  CAS  Google Scholar 

  72. Wu CY, Kirman JR, Rotte MJ, Davey DF, Perfetto SP, Rhee EG, Freidag BL, Hill BJ, Douek DC, Seder RA. Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 2002;3:852–8.

    Article  PubMed  CAS  Google Scholar 

  73. Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 2006;177:2888–98.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant AI-46530 (S.L.S) and Trudeau Institute. We thank Dr. D. Jelley-Gibbs for helpful discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kai McKinstry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinstry, K.K., Strutt, T.M. & Swain, S.L. The effector to memory transition of CD4 T cells. Immunol Res 40, 114–127 (2008). https://doi.org/10.1007/s12026-007-8004-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-8004-y

Keywords

Navigation