Skip to main content
Log in

Histone deacetylase regulation of immune gene expression in tumor cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance the expression of immunologically important molecules in tumor cells and HDACi treated tumor cells are able to induce immune responses in vitro and in vivo. Systemic HDACi are in clinical trails in cancer and also being used in several autoimmune disease models. To date, 18 HDACs have been reported in human cells and more than thirty HDACi identified, although only a few immune targets of these inhibitors have been identified. Here, we discuss the molecular pathways employed by HDACi and their potential role in inducing immune responses against tumors. We review data suggesting that selection of target specific HDACi and combinations with other agents and modalities, including those that activate stress pathways, may further enhance the efficacy of epigenetic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457–63.

    PubMed  CAS  Google Scholar 

  2. Conley BA, Wright JJ, Kummar S. Targeting epigenetic abnormalities with histone deacetylase inhibitors. Cancer 2006;107:832–40.

    PubMed  CAS  Google Scholar 

  3. Huang L. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 2006;209:611–16.

    PubMed  CAS  Google Scholar 

  4. Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs 2005;14:1497–1511.

    PubMed  CAS  Google Scholar 

  5. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematological malignancies. J Clin Oncol 2005;23:3971–93.

    PubMed  CAS  Google Scholar 

  6. Laird PW. Cancer epigenetics. Human Mol Genet 2005;14:R65–76.

    CAS  Google Scholar 

  7. Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer (2006); (www.molecular-cancer.com/content/5/1/60).

  8. Ansel KM, Lee DU, Rao A. An epigenetic view of helper T cell differentiation. Nature Immunol 2003;4:616–23.

    CAS  Google Scholar 

  9. Bergman Y, Cedar H. A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nature Rev Immunol 2004;4:753–61.

    CAS  Google Scholar 

  10. Smale ST, Fisher AG. Chromatin structure and gene regulation in the immune system. Annu Rev Immunol 2002;20:427–62.

    PubMed  CAS  Google Scholar 

  11. Tomasi TB, Magner WJ, Khan ANH. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 2006;55:1159–84.

    PubMed  Google Scholar 

  12. Magner WJ, Kazim AL, Stewart C et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 2000;165:7017–24.

    PubMed  CAS  Google Scholar 

  13. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251–60.

    PubMed  CAS  Google Scholar 

  14. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074–80.

    PubMed  CAS  Google Scholar 

  15. Chou S-D, Khan ANH, Magner WJ, Tomasi TB. Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 2005;17:1483–94.

    PubMed  CAS  Google Scholar 

  16. Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci USA 2003;100:14742–47.

    PubMed  CAS  Google Scholar 

  17. DeRuijten AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–49.

    Google Scholar 

  18. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997;90:595–606.

    PubMed  CAS  Google Scholar 

  19. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA. 2003;100:4389–94.

    PubMed  CAS  Google Scholar 

  20. Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Moll Cell 2005;18:601–7.

    CAS  Google Scholar 

  21. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81–120.

    PubMed  CAS  Google Scholar 

  22. Hake SB, Xiao A, Allis CD. Linking the epigenetic language of covalent histone modifications to cancer. Br J Cancer 2004;90:761–9.

    PubMed  CAS  Google Scholar 

  23. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 2006;17:189–202.

    PubMed  CAS  Google Scholar 

  24. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev Genet 2004;5:522–31.

    CAS  Google Scholar 

  25. Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005;19:517–29.

    PubMed  CAS  Google Scholar 

  26. Ghosh N, Gyory I, Wright G, Wood J, Wright KL. Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. J Biol Chem 2001;276:15264–68.

    PubMed  CAS  Google Scholar 

  27. Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K. Transcriptional repression by Blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 2000;20:2592–603.

    PubMed  CAS  Google Scholar 

  28. Zika E, Greer SF, Zhu X-S, Ting JP-Y. Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and Major Histocompatibility Complex class II enhanceosome formation. Mol Cell Biol 2003;23:3091–102.

    PubMed  CAS  Google Scholar 

  29. Li H, Ou X, Xiong J, Wang T. HPV16E7 mediates HDAC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. Biochem Biophys Res Commun 2006;349:1315–21.

    PubMed  CAS  Google Scholar 

  30. Maeda T, Towatari M, Kosugi H, Saito H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000;96:3847–56.

    PubMed  CAS  Google Scholar 

  31. Khan ANH, Magner WJ, Tomasi TB. An epigenetically altered tumor cell vaccine. Cancer Immunol Immunother 2004;53:748–54.

    PubMed  CAS  Google Scholar 

  32. Gialitakis M, Kretsovali A, Spilianakis C, et al. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A. Nucleic Acid Res 2006;34:765–72.

    PubMed  CAS  Google Scholar 

  33. Kanaseki T, Ikeda H, Takamura Y, et al. Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinoma. J Immunol 2003;170:4980–5.

    PubMed  CAS  Google Scholar 

  34. Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res 2006;4:339–49.

    PubMed  CAS  Google Scholar 

  35. Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharm 2005;68:917–32.

    CAS  Google Scholar 

  36. Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006;25:176–85.

    PubMed  CAS  Google Scholar 

  37. Mai A, Massa S, Pezzi R, et al. Class II (IIa)-selective histone deacetylase inhibitors.1. synthesis and biological evaluation of novel (Aryloxopropenyl)pyrrolyl Hydroxyamides. J Med Chem 2005;48:3344–53.

    PubMed  CAS  Google Scholar 

  38. Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 2002;62:4916–21.

    PubMed  CAS  Google Scholar 

  39. Hu E, Dul E, Sung C-M, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003;307:720–8.

    PubMed  CAS  Google Scholar 

  40. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet 2003;19:286–93.

    PubMed  CAS  Google Scholar 

  41. Mariadason JM, Corner GA, Augenlicht LH. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 2000;60:4561–72.

    PubMed  CAS  Google Scholar 

  42. Bubenik J. Prospects for immunotherapy of MHC class I deficient tumors. Folia Biol (Praha) 2003;49:95–99.

    CAS  Google Scholar 

  43. Mora-García ML, Duenas-González A, Hernández-Montes J, et al. Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid. J Transl Med (2006); (www.translational-medicine.com/content/4/1/55).

  44. Pulaski BA, Ostrand-Rosenberg S. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res 1998;58:1486–93.

    PubMed  CAS  Google Scholar 

  45. Kim JJ, Tsai A, Nottingham LK, et al. Intracellular adhesion molecule-1 modulates β-chemokines and directly costimulates T cells in vivo. J Clin Invest 1999;103:869–77.

    PubMed  CAS  Google Scholar 

  46. Hellebrekers DM, Castermans K, Viré E, et al. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 2006;66:10770–77.

    PubMed  CAS  Google Scholar 

  47. Skov S, Pedersen MT, Andresen L, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 2005;65:11136–45.

    PubMed  CAS  Google Scholar 

  48. Armeanu S, Bitzer M, Lauer UM, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 2005;65:6321–9.

    PubMed  CAS  Google Scholar 

  49. Zhou H, Luo Y, Lo FJ, et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc Natl Acad Sci USA 2005;102:10846–51.

    PubMed  CAS  Google Scholar 

  50. Kamiryo Y, Yajima T, Saito K, et al. Soluble branched (1,4)-β-d-glucans from Acetobacter species enhances anti-tumor activities against MHC class I-negative and –positive malignant melanoma through augmented NK activity and cytotoxic T cell response. Int J Cancer 2005;115:769–76.

    PubMed  CAS  Google Scholar 

  51. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take center stage. Nature Rev Immunol 2005;5:112–24.

    CAS  Google Scholar 

  52. Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol 2005;17:29–35.

    PubMed  CAS  Google Scholar 

  53. Hassa PO, Hottiger MO. An epigenetic code for DNA damage repair pathways? Biochem Cell Biol 2005;83:270–85.

    PubMed  CAS  Google Scholar 

  54. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005;436:1186–90.

    PubMed  CAS  Google Scholar 

  55. Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47–64.

    PubMed  CAS  Google Scholar 

  56. Thomas AM, Santarsiero LM, Lutz ER, et al. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 2004;200:297–306.

    PubMed  CAS  Google Scholar 

  57. Restifo NP. Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr Opin Immunol 2000;12:597–603.

    PubMed  CAS  Google Scholar 

  58. Albert ML. Death-defying immunity: do apoptotic cells influence antigen processing and presentation. Nature Rev Immunol 2004;4:223–30.

    CAS  Google Scholar 

  59. Gamrekelashvili J, Krüger C, von Wasielewski R, et al. Necrotic tumor cell death in vivo impairs tumor-specific immune responses. J Immunol 2007;178:1573–80.

    PubMed  CAS  Google Scholar 

  60. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene 2007;26:1351–56.

    PubMed  CAS  Google Scholar 

  61. Moore PS, Barbi S, Donadelli M, et al. Gene expression profiling after treatment with histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. Biochem Biophy Acta 2004;1693:167–76.

    CAS  Google Scholar 

  62. Qian DZ, Kato Y, Shabbeer S, et al. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res 2006;12:634–42.

    PubMed  CAS  Google Scholar 

  63. Borghesi L, Milcarek C. Innate versus Adaptive Immunity: A Paradigm Past Its Prime? Cancer Res 2007;67:3989–93.

    PubMed  CAS  Google Scholar 

  64. Reilly CM, Mishra N, Miller JM, et al. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J Immunol 2004;173:4171–78.

    PubMed  CAS  Google Scholar 

  65. Glauben R, Batra A, Fedke I, et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 2006;176:5015–22.

    PubMed  CAS  Google Scholar 

  66. Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 2003;8:707–17.

    PubMed  CAS  Google Scholar 

  67. Camelo S, Iglesias A, Hwang D, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;164:10–21.

    PubMed  CAS  Google Scholar 

  68. Leoni F, Zaliani A, Bertolini G, et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002;99:2995–3000.

    PubMed  CAS  Google Scholar 

  69. Mishra N, Reilly CM, Brown DR, et al. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 2003;111:539–52.

    PubMed  CAS  Google Scholar 

  70. Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Invest 2003;33:244–8.

    PubMed  CAS  Google Scholar 

  71. Reddy P, Maeda Y, Hotary K, et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci USA 2004;101:3921–6.

    PubMed  CAS  Google Scholar 

  72. Blanchard F, Chipoy C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 2005;10:197–204.

    PubMed  CAS  Google Scholar 

  73. de Visser KE, Coussens LM. The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immunother 2005;54:1143–52.

    PubMed  Google Scholar 

  74. De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in prostate carcinogenesis. Nature Rev cancer 2007;7:256–69.

    Google Scholar 

  75. Rigas B. The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia. Curr Opin Gastroenterol 2007;23:55–9.

    PubMed  CAS  Google Scholar 

  76. Anderson LA, Johnston BT, Watson RG, et al. Nonsteroidal anti-inflammatory drugs and the esophageal inflammation-metaplasia-adenocarcinoma sequence. Cancer Res 2006;66:4975–82.

    PubMed  CAS  Google Scholar 

  77. Karin M. Inflammation and cancer: the long reach of Ras. Nature Med 2005;11:20–21.

    PubMed  CAS  Google Scholar 

  78. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nature Med 2004;10:909–15.

    PubMed  CAS  Google Scholar 

  79. Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem. 2003;87:407–16.

    PubMed  CAS  Google Scholar 

  80. Iwata K, Tomita K, Sano H, et al. Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell Immunol 2002;218:26–33.

    PubMed  CAS  Google Scholar 

  81. Zampetaki A, Xiao Q, Zeng L, et al. TLR4 expression in mouse embryonic stem cells and in stem cell-derived vascular cells is regulated by epigenetic modifications. Biochem Biophys Res Commun 2006;347:89–99.

    PubMed  CAS  Google Scholar 

  82. Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002;8:718–28.

    PubMed  CAS  Google Scholar 

  83. O’Connor OA, Heaney ML, Schwartz L, et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006;24:166–73.

    PubMed  CAS  Google Scholar 

  84. Brogdon JL, Xu Y, Szabo SJ, et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood. 2007;109:1123–30.

    PubMed  CAS  Google Scholar 

  85. Moreira JM, Scheipers P, Sorensen P. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer (2003); (www.biomedcentral.com/1471–2407/3/30).

  86. Kozlowska A, Jagodzinski PP. Effect of Trichostatin A on CD4 surface density in peripheral blood T cells. Folia Histochem Cytobiol 2006;44:259–62.

    PubMed  CAS  Google Scholar 

  87. Mishra N, Brown DR, Olorenshaw IM, Kammer GM. Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc Natl Acad Sci USA 2001;98:2628–33.

    PubMed  CAS  Google Scholar 

  88. Dangond F, Gullans SR. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Biophys Res Commun 1998;247:833–7.

    PubMed  CAS  Google Scholar 

  89. Reiner SL. Epigenetic control in the immune response. Hum Mol Genet 2005;14(Spec 1):R41–46.

    PubMed  CAS  Google Scholar 

  90. Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 2007;282:5969–72.

    PubMed  CAS  Google Scholar 

  91. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004;206:193–9.

    PubMed  CAS  Google Scholar 

  92. Graham B, Gibson SB. The two faces of NFkappaB in cell survival responses. Cell Cycle 2005;4:1342–45.

    PubMed  CAS  Google Scholar 

  93. Berghe WV, Ndlovu MN, Hoya-Arias R, et al. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006;72:1114–31.

    Google Scholar 

  94. Rahman MM, Kukita A, Kukita T, et al. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003;101:3451–59.

    PubMed  CAS  Google Scholar 

  95. Chakravorrty D, Koide N, Kato Y, et al. The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells. J Endotoxin Res 2000;6:243–7.

    Google Scholar 

  96. Yu Z, Zhang W, Kone BC. Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol 2002;13:2009–17.

    PubMed  CAS  Google Scholar 

  97. Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Bio Chem 2001;276:44641–46.

    CAS  Google Scholar 

  98. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 2003;81:549–57.

    PubMed  CAS  Google Scholar 

  99. Soloaga A, Thomson S, Wiggin GR, et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 2003;22:2788–97.

    PubMed  CAS  Google Scholar 

  100. Clayton AL, Mahadevan LC. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 2003;546:51–8.

    PubMed  CAS  Google Scholar 

  101. Klampfer L, Huang J, Swaby L-A, Augenlicht L. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 2004;279:30358–68.

    PubMed  CAS  Google Scholar 

  102. Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005;123:581–92.

    PubMed  CAS  Google Scholar 

  103. Sanderson L, Tylor GW, Aboayge EO, et al. Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor Trichostatin A after intraperitoneal administration to mice. Drug Metab Dispos 2004;32:1132–38.

    PubMed  CAS  Google Scholar 

  104. Zou W. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nature Rev Cancer 2005;5:263–74.

    CAS  Google Scholar 

  105. Altieri SL, Khan ANH, Tomasi TB. Exosomes from plasmacytoma cells as a tumor vaccine. J Immunother 2004;27:282–8.

    PubMed  Google Scholar 

  106. Chaput N, Taieb J, Schartz N, et al. The potential of exosomes in immunotherapy of cancer. Blood Cells Mol Dis 2005;35:111–15.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health grant HD 17013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nazmul H. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.N.H., Tomasi, T.B. Histone deacetylase regulation of immune gene expression in tumor cells. Immunol Res 40, 164–178 (2008). https://doi.org/10.1007/s12026-007-0085-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0085-0

Keywords

Navigation