Skip to main content

Advertisement

Log in

Neutrophils and TRAIL: insights into BCG immunotherapy for bladder cancer

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Bladder cancer is a huge economic burden on the healthcare system and is responsible for approximately 5% of all cancer deaths in humans. Mycobacterium bovis BCG-based therapy is the treatment of choice for superficial bladder cancer. Bacillus Calmette-Guerin (BCG) instillation in the bladder results in a massive local inflammatory response that has secondary antitumor properties. Recent studies have demonstrated that neutrophils present in the bladder after BCG instillation release large amounts of the apoptosis-inducing molecule TRAIL, as well as chemokines that recruit other immune cells, suggesting that neutrophils play a key role in the antitumor response to BCG therapy. This review discusses the impact of these findings on the understanding of the antitumor mechanisms underlying BCG-based immunotherapy for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TNF-related apoptosis-inducing ligand:

TRAIL

Tumor necrosis factor:

TNF

Interferon:

IFN

Polymorphonuclear leukocyte (neutrophil):

PMN

Mycobacterium bovis bacillus Calmette-Guérin:

BCG

Myeloperoxidase:

MPO

Lactoferrin:

LF

Granulocyte-colony stimulating factor:

G-CSF

References

  1. Ludwig AT, Moore JM, Luo Y, Chen X, Saltsgaver NA, O’Donnell MA, Griffith TS. Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res 2004;10:3386–90.

    Article  Google Scholar 

  2. Kemp TJ, Ludwig AT, Earel JK, Moore JM, Vanoosten RL, Moses B, Leidal K, Nauseef WM, Griffith TS. Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 2005;10:3474–82.

    Article  CAS  Google Scholar 

  3. Simons MP, Moore JM, Kemp TJ, Griffith TS. Identification of the Mycobacterial Subcomponents Involved in the Release of TRAIL/Apo-2L from Human Neutrophils. Infect Immun 2007;75:1265–71.

    Article  PubMed  CAS  Google Scholar 

  4. Armitage RJ. Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 1994;3:407–13.

    Article  Google Scholar 

  5. Grewal IS, Flavell RA. The CD40 ligand. At the center of the immune universe? Immunol Res 1997;1:59–70.

    Google Scholar 

  6. Cerami A, Beutler B. The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 1988;1:28–31.

    Article  Google Scholar 

  7. Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 1995;1:71–7.

    Article  Google Scholar 

  8. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995;6547:348–51.

    Article  Google Scholar 

  9. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;5239:1189–92.

    Article  Google Scholar 

  10. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996;5291:1363–6.

    Article  Google Scholar 

  11. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;6:673–82.

    Article  Google Scholar 

  12. Cha SS, Kim MS, Choi YH, Sung BJ, Shin NK, Shin HC, Sung YC, Oh BH. 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity 1999;2:253–61.

    Article  Google Scholar 

  13. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, Ashkenazi A, de Vos AM. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4:563–71.

    Article  PubMed  CAS  Google Scholar 

  14. Hymowitz SG, O’Connell MP, Ultsch MH, Hurst A, Totpal K, Ashkenazi A, de Vos AM, Kelley RF. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 2000;4:633–40.

    Article  CAS  Google Scholar 

  15. Bodmer JL, Meier P, Tschopp J, Schneider P. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 2000;27:20632–7.

    Article  Google Scholar 

  16. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;22:12687–90.

    Google Scholar 

  17. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998;6:2833–40.

    Google Scholar 

  18. Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH, Smith CA, Goodwin RG, Kubin MZ. Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 1999;5:2597–605.

    Google Scholar 

  19. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997;6:813–20.

    Article  Google Scholar 

  20. Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998;5:559–63.

    Article  Google Scholar 

  21. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999;9:1451–60.

    Article  Google Scholar 

  22. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999;8:1343–54.

    Article  Google Scholar 

  23. Grouard G, Durand I, Filgueira L, Banchereau J, Liu YJ. Dendritic cells capable of stimulating T cells in germinal centres. Nature 1996;384:364–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kemp TJ, Moore JM, Griffith TS. Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing Oligodeoxynucleotide stimulation. J Immunol 2004;2:892–9.

    Google Scholar 

  25. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 2001;2:194–200.

    Article  CAS  Google Scholar 

  26. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998;188:2375–80.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez-Lorenzo MJ, Alava MA, Gamen S, Kim KJ, Chuntharapai A, Pineiro A, Naval J, Anel A. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 1998;9:2714–25.

    Article  Google Scholar 

  28. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM. The receptor for the cytotoxic ligand TRAIL. Science 1997;5309:111–3.

    Article  Google Scholar 

  29. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;5327:815–8.

    Article  Google Scholar 

  30. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;5327:818–21.

    Article  Google Scholar 

  31. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997;17:5386–97.

    Article  Google Scholar 

  32. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang C-P, DuBose RF, Goodwin RG, Smith CA. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186:1165–70.

    Article  PubMed  CAS  Google Scholar 

  33. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001;4:383–5.

    Article  Google Scholar 

  34. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;23:14363–7.

    Article  Google Scholar 

  35. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;22:5579–88.

    Google Scholar 

  36. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;4:505–12.

    Article  Google Scholar 

  37. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;5:845–53.

    Article  Google Scholar 

  38. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;15:10932–7.

    Google Scholar 

  39. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 1997;10:2794–804.

    Article  Google Scholar 

  40. Renshaw SA, Parmar JS, Singleton V, Rowe SJ, Dockrell DH, Dower SK, Bingle CD, Chilvers ER, Whyte MK. Acceleration of human neutrophil apoptosis by TRAIL. J Immunol 2003;2:1027–33.

    Google Scholar 

  41. Lum JJ, Bren G, McClure R, Badley AD. Elimination of senescent neutrophils by TNF-related apoptosis-inducing [corrected] ligand. J Immunol 2005;2:1232–8.

    Google Scholar 

  42. Matsuyama W, Yamamoto M, Higashimoto I, Oonakahara K, Watanabe M, Machida K, Yoshimura T, Eiraku N, Kawabata M, Osame M, Arimura K. TNF-related apoptosis-inducing ligand is involved in neutropenia of systemic lupus erythematosus. Blood 2004;1:184–91.

    Article  CAS  Google Scholar 

  43. Song K, Chen Y, Goke R, Wilmen A, Seidel C, Goke A, Hilliard B. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 2000;7:1095–104.

    Article  Google Scholar 

  44. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat Immunol 2003;3:255–60.

    Article  CAS  Google Scholar 

  45. Mi QS, Ly D, Lamhamedi-Cherradi SE, Salojin KV, Zhou L, Grattan M, Meagher C, Zucker P, Chen YH, Nagle J, Taub D, Delovitch TL. Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice. Diabetes 2003;8:1967–75.

    Article  Google Scholar 

  46. Lamhamedi-Cherradi SE, Zheng S, Tisch RM, Chen YH. Critical roles of tumor necrosis factor-related apoptosis-inducing ligand in type 1 diabetes. Diabetes 2003;9:2274–8.

    Article  Google Scholar 

  47. Cretney E, Uldrich AP, Berzins SP, Strasser A, Godfrey DI, Smyth MJ. Normal thymocyte negative selection in TRAIL-deficient mice. J Exp Med 2003;3:491–6.

    Article  CAS  Google Scholar 

  48. Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC. The generation of protective memory-like CD8(+) T cells during homeostatic proliferation requires CD4(+) T cells. Nat Immunol 2006;5:475–81.

    Article  CAS  Google Scholar 

  49. Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 2005;7029:88–93.

    Article  CAS  Google Scholar 

  50. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ. Cancer statistics, 2004. CA Cancer J Clin 2004;1:8–29.

    Article  Google Scholar 

  51. Morales A, Johnston B, Emerson L, Heaton JW. Intralesional administration of biological response modifiers in the treatment of localized cancer of the prostate: a feasibility study. Urology 1997;4:495–502.

    Article  Google Scholar 

  52. Kavoussi LR, Brown EJ, Ritchey JK, Ratliff TL. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. J Clin Invest 1990;1:62–7.

    Article  Google Scholar 

  53. Becich MJ, Carroll S, Ratliff TL. Internalization of bacille Calmette-Guerin by bladder tumor cells. J Urol 1991;6:1316–24.

    Google Scholar 

  54. Luo Y, Szilvasi A, Chen X, DeWolf WC, O’Donnell MA. A novel method for monitoring Mycobacterium bovis BCG trafficking with recombinant BCG expressing green fluorescent protein. Clin Diagn Lab Immunol 1996;6:761–8.

    Google Scholar 

  55. Hedges S, Agace W, Svensson M, Sjogren AC, Ceska M, Svanborg C. Uroepithelial cells are part of a mucosal cytokine network. Infect Immun 1994;6:2315–21.

    Google Scholar 

  56. Thalmann GN, Sermier A, Rentsch C, Mohrle K, Cecchini MG, Studer UE. Urinary Interleukin-8 and 18 predict the response of superficial bladder cancer to intravesical therapy with bacillus Calmette-Guerin. J Urol 2000;6:2129–33.

    Google Scholar 

  57. Shapiro A, Lijovetzky G, Pode D. Changes of th emucosal architecture and of urine cytology during BCG treatment. World J Urol 1988;6:61–8.

    Article  Google Scholar 

  58. de Boer EC, de Jong WH, van der Meijden AP, Steerenberg PA, Witjes F, Vegt PD, Debruyne FM, Ruitenberg EJ. Leukocytes in the urine after intravesical BCG treatment for superficial bladder cancer. A flow cytofluorometric analysis. Urol Res 1991;1:45–50.

    Article  Google Scholar 

  59. de Reijke TM, de Boer EC, Kurth KH, Schamhart DH. Urinary cytokines during intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer: processing, stability and prognostic value. J Urol 1996;2:477–82.

    Article  Google Scholar 

  60. Bohle A, Nowc C, Ulmer AJ, Musehold J, Gerdes J, Hofstetter AG, Flad HD. Elevations of cytokines interleukin-1, interleukin-2 and tumor necrosis factor in the urine of patients after intravesical bacillus Calmette-Guerin immunotherapy. J Urol 1990;1:59–64.

    Google Scholar 

  61. Jackson AM, Alexandroff AB, Kelly RW, Skibinska A, Esuvaranathan K, Prescott S, Chisholm GD, James K. Changes in urinary cytokines and soluble intercellular adhesion molecule-1 (ICAM-1) in bladder cancer patients after bacillus Calmette-Guerin (BCG) immunotherapy. Clin Exp Immunol 1995;3:369–75.

    Google Scholar 

  62. Luo Y, Chen X, Downs TM, DeWolf WC, O’Donnell MA. IFN-alpha 2B enhances Th1 cytokine responses in bladder cancer patients receiving Mycobacterium bovis bacillus Calmette-Guerin immunotherapy. J Immunol 1999;4:2399–405.

    Google Scholar 

  63. Troy AJ, Davidson PJ, Atkinson CH, Hart DN. CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activated. J Urol 1999;6:1962–7.

    Google Scholar 

  64. Stoll S, Jonuleit H, Schmitt E, Muller G, Yamauchi H, Kurimoto M, Knop J, Enk AH. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 1998;10:3231–9.

    Article  Google Scholar 

  65. Kuniyoshi JS, Kuniyoshi CJ, Lim AM, Wang FY, Bade ER, Lau R, Thomas EK, Weber JS. Dendritic cell secretion of IL-15 is induced by recombinant huCD40LT and augments the stimulation of antigen-specific cytolytic T cells. Cell Immunol 1999;1:48–58.

    Article  Google Scholar 

  66. Jozsef L, Khreiss T, El Kebir D, Filep JG. Activation of TLR-9 induces IL-8 secretion through peroxynitrite signaling in human neutrophils. J Immunol 2006;2:1195–202.

    Google Scholar 

  67. Poppas DP, Pavlovich CP, Folkman J, Voest EE, Chen X, Luster AD, O’Donnell MA. Intravesical bacille Calmette-Guerin induces the antiangiogenic chemokine interferon-inducible protein 10. Urology 1998;2:268–75 discussion 275–6.

    Article  Google Scholar 

  68. Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999;8:1155–64.

    Article  Google Scholar 

  69. Pang AS, Morales A. BCG induced murine peritoneal exudate cells: cytotoxic activity against a syngeneic bladder tumor cell line. J Urol 1982;6:1225–9.

    Google Scholar 

  70. Hofman P, Piche M, Far DF, Le Negrate G, Selva E, Landraud L, Alliana-Schmid A, Boquet P, Rossi B. Increased Escherichia coli phagocytosis in neutrophils that have transmigrated across a cultured intestinal epithelium. Infect Immun 2000;2:449–55.

    Article  Google Scholar 

  71. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 1988;141:2407–12.

    PubMed  CAS  Google Scholar 

  72. Lee WL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect 2003;14:1299–306.

    Article  CAS  Google Scholar 

  73. Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Ann Rev Immunol 2002;20:825–52.

    Article  CAS  Google Scholar 

  74. Medzhitov R, Janeway C Jr. The Toll receptor family and microbial recognition. Trends Microbiol 2000;10:452–6.

    Article  Google Scholar 

  75. DeLeo FR, Allen LA, Apicella M, Nauseef WM. NADPH oxidase activation and assembly during phagocytosis. J Immunol 1999;12:6732–40.

    Google Scholar 

  76. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 2004;122:277–91.

    Article  PubMed  CAS  Google Scholar 

  77. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 1999;4:1906–13.

    Google Scholar 

  78. Cassatella MA, Huber V, Calzetti F, Margotto D, Tamassia N, Peri G, Mantovani A, Rivoltini L, Tecchio C. Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. J Leukoc Biol 2006;1:123–32.

    Google Scholar 

  79. Koga Y, Matsuzaki A, Suminoe A, Hattori H, Hara T. Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res 2004;3:1037–43.

    Article  Google Scholar 

  80. Suttmann H, Riemensberger J, Bentien G, Schmaltz D, Stockle M, Jocham D, Bohle A, Brandau S. Neutrophil granulocytes are required for effective bacillus calmette-guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res 2006;16:8250–7.

    Article  CAS  Google Scholar 

  81. Kamohara H, Matsuyama W, Shimozato O, Abe K, Galligan C, Hashimoto S, Matsushima K, Yoshimura T. Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology 2004;2:186–94.

    Article  Google Scholar 

  82. Alexandroff AB, Jackson AM, O’Donnell MA, James K. BCG immunotherapy of bladder cancer: 20 years on. Lancet 1999;9165:1689–94.

    Article  Google Scholar 

  83. Nauseef WM, McCormick SJ, Goedken M. Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem 1998;12:7107–11.

    Article  Google Scholar 

  84. Klebanoff SJ, Clark RA. The neutrophil: function and clinical disorders. Amsterdam: North-Holland Pub. Co, 1978.

  85. Kjeldsen L, Bainton DF, Sengelov H, Borregaard N. Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood 1993;10:3183–91.

    Google Scholar 

  86. Squier MK, Sehnert AJ, Cohen JJ. Apoptosis in leukocytes. J Leukoc Biol 1995;1:2–10.

    Google Scholar 

  87. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 2003;14:1317–27.

    Article  CAS  Google Scholar 

  88. Burgess AJ, Pavey S, Warrener R, Hunter LJ, Piva TJ, Musgrove EA, Saunders N, Parsons PG, Gabrielli BG. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol 2001;4:828–37.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Iowa Infectious Diseases Postdoctoral Training Grant (MPS), grant AI034879–19 from the National Institutes of Health (WMN), Carver Medical Research Initiative Grant administered through the University of Iowa Carver College of Medicine (TSG), and grant CA109446 from the National Cancer Institute (TSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Griffith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, M.P., Nauseef, W.M. & Griffith, T.S. Neutrophils and TRAIL: insights into BCG immunotherapy for bladder cancer. Immunol Res 39, 79–93 (2007). https://doi.org/10.1007/s12026-007-0084-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0084-1

Keywords

Navigation