Skip to main content

Advertisement

Log in

Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Diabetes is a chronic autoimmune disease that affects 4–5% of the world’s population. If the present trends continue, diabetes would soon become a major/leading health problem worldwide. Hence there is an urgent need to develop novel approaches for the treatment of diabetes. While transplantation of the pancreas or that of isolated pancreatic islets can lead to the cure of the disease in some patients, immunological complications and the chronic shortage of donors makes it impossible to adequately treat all patients. Interestingly, embryonic stem cells (ESC) have emerged as a possible source of pluripotent cells that can be coaxed into insulin-producing cells (IPCs) that can be used to treat diabetes. However, until appropriate protocols have been established, this new technology will be difficult to tap into. Our laboratory is interested in developing new strategies for harnessing the pluripotency of ESC and differentiating them into IPCs that are stable and will continue to produce insulin in vivo. A second aspect is the non-availability of non-invasive imaging protocols. We show here that transcriptionally targeted luciferase expression can be used successfully to non-invasively monitor the transplanted cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986;314:1360–8.

    Article  PubMed  CAS  Google Scholar 

  2. Humar A, et al. Decreased surgical risks of pancreas transplantation in the modern era. Ann Surg 2000;231:269–75.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro AM, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–8.

    Article  PubMed  CAS  Google Scholar 

  4. Axelrod HR. Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev Biol 1984;101:225–8.

    Article  PubMed  CAS  Google Scholar 

  5. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  6. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  7. Blyszczuk P, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003;100:998–1003.

    Article  PubMed  CAS  Google Scholar 

  8. Hori Y, et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002;99:16105–10.

    Article  PubMed  CAS  Google Scholar 

  9. Lumelsky N, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–94.

    Article  PubMed  CAS  Google Scholar 

  10. Miyazaki S, Yamato E, Miyazaki J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 2004;53:1030–7.

    Article  PubMed  CAS  Google Scholar 

  11. Soria B, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–62.

    Article  PubMed  CAS  Google Scholar 

  12. Habener JF, Kemp DM, Thomas MK. Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005;146:1025–34.

    Article  PubMed  CAS  Google Scholar 

  13. Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 2004;47:597–613.

    Article  PubMed  CAS  Google Scholar 

  14. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 1999;23:71–5.

    PubMed  CAS  Google Scholar 

  15. Jacquemin P, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 2000;20:4445–54.

    Article  PubMed  CAS  Google Scholar 

  16. Wu KL, et al. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene. Mol Cell Biol 1997;17:6002–13.

    PubMed  CAS  Google Scholar 

  17. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705–13.

    PubMed  CAS  Google Scholar 

  18. Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development 2000;127:4905–13.

    PubMed  CAS  Google Scholar 

  19. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–52.

    PubMed  CAS  Google Scholar 

  20. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–9.

    Article  PubMed  CAS  Google Scholar 

  21. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15:106–10.

    Article  PubMed  CAS  Google Scholar 

  22. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998;12:1763–8.

    PubMed  CAS  Google Scholar 

  23. Offield MF, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–95.

    PubMed  CAS  Google Scholar 

  24. Apelqvist A, et al. Notch signalling controls pancreatic cell differentiation. Nature 1999;400:877–81.

    Article  PubMed  CAS  Google Scholar 

  25. Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 2003;100:14920–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000;97:1607–11.

    Article  PubMed  CAS  Google Scholar 

  27. Sussel L, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998;125:2213–21.

    PubMed  CAS  Google Scholar 

  28. Henseleit KD, et al. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 2005;132:3139–49.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuoka TA, et al. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol Cell Biol 2003;23:6049–62.

    Article  PubMed  CAS  Google Scholar 

  30. Matsuoka TA, et al. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci USA 2004;101:2930–3.

    Article  PubMed  CAS  Google Scholar 

  31. Sander M, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 2000;127:5533–40.

    PubMed  CAS  Google Scholar 

  32. Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995;9:1009–19.

    Article  PubMed  CAS  Google Scholar 

  33. Naya FJ, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 1997;11:2323–34.

    PubMed  CAS  Google Scholar 

  34. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997;386:399–402.

    Article  PubMed  CAS  Google Scholar 

  35. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997;387:406–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kinder SJ, et al. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 2001;128:3623–34.

    PubMed  CAS  Google Scholar 

  37. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991;113:891–911.

    PubMed  CAS  Google Scholar 

  38. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol 1999;15:393–410.

    Article  PubMed  CAS  Google Scholar 

  39. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351–83.

    Article  PubMed  CAS  Google Scholar 

  40. Tam PP, Khoo PL, Wong N, Tsang TE, Behringer RR. Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. Dev Biol 2004;274:171–87.

    Article  PubMed  CAS  Google Scholar 

  41. Brennan J, et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 2001;411:965–9.

    Article  PubMed  CAS  Google Scholar 

  42. Conlon FL, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994;120:1919–28.

    PubMed  CAS  Google Scholar 

  43. Haegel H, et al. Lack of beta-catenin affects mouse development at gastrulation. Development 1995;121:3529–37.

    PubMed  CAS  Google Scholar 

  44. Kelly OG, Pinson KI, Skarnes WC. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 2004;131:2803–15.

    Article  PubMed  CAS  Google Scholar 

  45. Liu P, et al. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999;22:361–5.

    Article  PubMed  CAS  Google Scholar 

  46. D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005;23:1534–41.

    Article  PubMed  CAS  Google Scholar 

  47. D’Amour KA, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24:1392–1401.

    Article  PubMed  CAS  Google Scholar 

  48. Gouon-Evans V, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 2006;24:1402–11.

    Article  PubMed  CAS  Google Scholar 

  49. Kubo A, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004;131:1651–62.

    Article  PubMed  CAS  Google Scholar 

  50. Tada S, et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005;132:4363–74.

    Article  PubMed  CAS  Google Scholar 

  51. Yasunaga M, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005;23:1542–50.

    Article  PubMed  CAS  Google Scholar 

  52. Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998;125:1747–57.

    PubMed  CAS  Google Scholar 

  53. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was made possible by Grant Number R01 HLO73015 (NIH/NHLBI), a VA Merit Review Award, a grant from the ROTRF (Roche Organ Transplantation Research Foundation), and grant award 0455585Z from the American Heart Association (AHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Zavazava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, KM., Raikwar, S.P. & Zavazava, N. Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence. Immunol Res 39, 261–270 (2007). https://doi.org/10.1007/s12026-007-0070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0070-7

Keywords

Navigation