Skip to main content
Log in

VirtoScan - a mobile, low-cost photogrammetry setup for fast post-mortem 3D full-body documentations in x-ray computed tomography and autopsy suites

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Injuries such as bite marks or boot prints can leave distinct patterns on the body’s surface and can be used for 3D reconstructions. Although various systems for 3D surface imaging have been introduced in the forensic field, most techniques are both cost-intensive and time-consuming. In this article, we present the VirtoScan, a mobile, multi-camera rig based on close-range photogrammetry. The system can be integrated into automated PMCT scanning procedures or used manually together with lifting carts, autopsy tables and examination couch. The VirtoScan is based on a moveable frame that carries 7 digital single-lens reflex cameras. A remote control is attached to each camera and allows the simultaneous triggering of the shutter release of all cameras. Data acquisition in combination with the PMCT scanning procedures took 3:34 min for the 3D surface documentation of one side of the body compared to 20:20 min of acquisition time when using our in-house standard. A surface model comparison between the high resolution output from our in-house standard and a high resolution model from the multi-camera rig showed a mean surface deviation of 0.36 mm for the whole body scan and 0.13 mm for a second comparison of a detailed section of the scan. The use of the multi-camera rig reduces the acquisition time for whole-body surface documentations in medico-legal examinations and provides a low-cost 3D surface scanning alternative for forensic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Persson A, Lindblom M, Jackowski C. A state-of-the-art pipeline for postmortem CT and MRI visualization: from data acquisition to interactive image interpretation at autopsy. Acta Radiol. 2011;52:522–36.

    Article  PubMed  Google Scholar 

  2. Lundström C, Persson A, Ross S, Ljung P, Lindholm S, Gyllensvärd F, et al. State-of-the-art of visualization in post-mortem imaging. APMIS. 2012;120:316–26.

    Article  PubMed  Google Scholar 

  3. Westphal SE, Apitzsch J, Penzkofer T, Mahnken AH, Knüchel R. Virtual CT autopsy in clinical pathology: feasibility in clinical autopsies. Virchows Arch. 2012;461:211–9.

    Article  PubMed  Google Scholar 

  4. Wichmann D, Obbelode F, Vogel H, Hoepker WW, Nierhaus A, Braune S, et al. Virtual autopsy as an alternative to traditional medical autopsy in the intensive care UnitA prospective cohort study. Ann Intern Med. 2012;156:123–30.

    Article  PubMed  Google Scholar 

  5. Baglivo M, Winklhofer S, Hatch GM, Ampanozi G, Thali MJ, Ruder TD. The rise of forensic and post-mortem radiology—analysis of the literature between the year 2000 and 2011. J Forensic Radiol Imaging. 2013;1:3–9.

    Article  Google Scholar 

  6. Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.

    Article  PubMed  Google Scholar 

  7. Flach PM, Thali MJ, Germerott T. Times have changed! Forensic radiology—a new challenge for radiology and forensic pathology. Am J Roentgenol. 2014;202:W325–34.

    Article  Google Scholar 

  8. Ruder TD, Thali MJ, Hatch GM. Essentials of forensic post-mortem MR imaging in adults. Br J Radiol. 2014;87. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067017/

  9. Brüschweiler W, Braun M, Dirnhofer R, Thali MJ. Analysis of patterned injuries and injury-causing instruments with forensic 3D/CAD supported photogrammetry (FPHG): an instruction manual for the documentation process. Forensic Sci Int. 2003;132:130–8.

    Article  PubMed  Google Scholar 

  10. Thali MJ, Braun M, Dirnhofer R. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Forensic Sci Int. 2003;137:203–8.

    Article  PubMed  Google Scholar 

  11. Thali MJ, Braun M, Wirth J, Vock P, Dirnhofer R. 3D surface and body documentation in forensic medicine: 3-D/CAD photogrammetry merged with 3D radiological scanning. J Forensic Sci. 2003;48:2003118.

    Article  Google Scholar 

  12. Thali MJ, Braun M, Brueschweiler W, Dirnhofer R. “morphological imprint”: determination of the injury-causing weapon from the wound morphology using forensic 3D/CAD-supported photogrammetry. Forensic Sci Int. 2003;132:177–81.

    Article  PubMed  Google Scholar 

  13. Thali MJ, Braun M, Markwalder TH, Brueschweiler W, Zollinger U, Malik NJ, et al. Bite mark documentation and analysis: the forensic 3D/CAD supported photogrammetry approach. Forensic Sci Int. 2003;135:115–21.

    Article  CAS  PubMed  Google Scholar 

  14. Thali MJ, Braun M, Buck U, Aghayev E, Jackowski C, Vock P, et al. VIRTOPSY—scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci. 2005;50:1–15.

    Article  Google Scholar 

  15. Buck U, Naether S, Braun M, Bolliger S, Friederich H, Jackowski C, et al. Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation. Forensic Sci Int. 2007;170:20–8.

    Article  PubMed  Google Scholar 

  16. Buck U, Naether S, Räss B, Jackowski C, Thali MJ. Accident or homicide – virtual crime scene reconstruction using 3D methods. Forensic Sci Int. 2013;225:75–84.

    Article  PubMed  Google Scholar 

  17. Tschui J, Feddern N, Schwendener N, Campana L, Utz S, Schweizer M, et al. When the prey gets too big: an uncommon road accident involving a motorcyclist, a car and a bird. Int J Legal Med. 2015;130:463–7.

    Article  PubMed  Google Scholar 

  18. Brüschweiler W, Braun M, Fuchser HJ, Dirnhofer R. Photogrammetrische auswertung von haut- und weichteilwunden sowie knochenverletzungen zur bestimmung des tatwerkzeuges — grundlegende aspekte. Rechtsmedizin. 1997;7:76–83.

    Article  Google Scholar 

  19. Subke J, Wehner H-D, Wehner F, Szczepaniak S. Streifenlichttopometrie (SLT): a new method for the three-dimensional photorealistic forensic documentation in colour. Forensic Sci Int. 2000;113:289–95.

    Article  CAS  PubMed  Google Scholar 

  20. Thali MJ, Braun M, Brüschweiler W, Dirnhofer R. Matching tire tracks on the head using forensic photogrammetry. Forensic Sci Int. 2000;113:281–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sansoni G, Cattaneo C, Trebeschi M, Gibelli D, Porta D, Picozzi M. Feasibility of contactless 3D optical measurement for the analysis of bone and soft tissue lesions: new technologies and perspectives in forensic sciences. J Forensic Sci. 2009;54:540–5.

    Article  PubMed  Google Scholar 

  22. Ebert LC, Ptacek W, Naether S, Fürst M, Ross S, Buck U, et al. Virtobot—a multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy. Int J Med Robot. 2010;6:18–27.

    PubMed  Google Scholar 

  23. Schweitzer W, Röhrich E, Schaepman M, Thali MJ, Ebert L. Aspects of 3D surface scanner performance for post-mortem skin documentation in forensic medicine using rigid benchmark objects. J Forensic Radiol Imaging. 2013;1:167–75.

    Article  Google Scholar 

  24. Ebert LC, Ptacek W, Breitbeck R, Fürst M, Kronreif G, Martinez RM, et al. Virtobot 2.0: the future of automated surface documentation and CT-guided needle placement in forensic medicine. Forensic Sci Med Pathol. 2014;10:179–86.

    Article  PubMed  Google Scholar 

  25. Campana L, Breitbeck R, Bauer-Kreuz R, Buck U. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT). Int J Legal Med. 2015;130:787–97.

    Article  PubMed  Google Scholar 

  26. Urbanová P, Hejna P, Jurda M. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Sci Int. 2015;250:77–86.

    Article  PubMed  Google Scholar 

  27. Robinette KM, Daanen H, Paquet E. The CAESAR project: a 3-D surface anthropometry survey. Second Int Conf 3- Digit Imaging Model. 1999 Proc. 1999. pp. 380–6.

  28. Allen B, Curless B, Popović Z. The space of human body shapes: Reconstruction and parameterization from range scans. ACM SIGGRAPH 2003 Pap. New York, NY, USA: ACM; 2003. pp. 587–594. Available from: http://doi.acm.org/10.1145/1201775.882311. Accessed 4 Aug 2016.

  29. Treleaven P. Sizing us up. IEEE Spectr. 2004;41:28–31.

    Article  Google Scholar 

  30. Tong J, Zhou J, Liu L, Pan Z, Yan H. Scanning 3D full human bodies using kinects. IEEE Trans Vis Comput Graph. 2012;18:643–50.

    Article  PubMed  Google Scholar 

  31. Echevarria JI, Bradley D, Gutierrez D, Beeler T. Capturing and stylizing hair for 3D fabrication. ACM Trans Graph. 2014;33:125:1–125:11.

  32. Tzou C-HJ, Artner NM, Pona I, Hold A, Placheta E, Kropatsch WG, et al. Comparison of three-dimensional surface-imaging systems. J Plast Reconstr Aesthet Surg. 2014;67:489–97.

    Article  PubMed  Google Scholar 

  33. Beeler T. Passive spatiotemporal geometry reconstruction of human faces at high fidelity. IEEE Comput Graph Appl. 2015;35:82–90.

    Article  PubMed  Google Scholar 

  34. D ’Apuzzo N. Modeling human faces with multi-image photogrammetry. Electron. Imaging 2002. International Society for Optics and Photonics; 2002. pp. 191–197. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=876156. Accessed 30 Mar 2016.

  35. Abreu de Souza M, Robson S, Hebden JC. A photogrammetric technique for acquiring accurate head surfaces of newborn infants for optical tomography under clinical conditions. Photogramm Rec. 2012;27:253–71.

    Article  Google Scholar 

  36. Detchev I, Mazaheri M, Rondeel S, Habib A. Calibration of multi-camera photogrammetric systems. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci. 2014;XL-1:101–8.

    Article  Google Scholar 

  37. Pesce M, Galantucci LM, Percoco G, Lavecchia F. A low-cost multi camera 3D scanning system for quality measurement of non-static subjects. Procedia CIRP. 2015;28:88–93.

    Article  Google Scholar 

  38. de Sainte Croix MM, Gauld D, Forgie AH, Lowe R. Three-dimensional imaging of human cutaneous forearm bite marks in human volunteers over a 4 day period. J Forensic Legal Med. 2016;40:34–9.

    Article  Google Scholar 

  39. Kottner S, Ebert LC, Ampanozi G, Braun M, Thali MJ, Gascho D. A mobile, multi-camera setup for 3D full body imaging in combination with post-mortem computed tomography procedures. 7th Int. Conf. on 3D Body Scanning Technologies, Lugano, Switzerland; 2016.

  40. Leipner A, Baumeister R, Thali MJ, Braun M, Dobler E, Ebert LC. Multi-camera system for 3D forensic documentation. Forensic Sci Int. 2016;261:123–8.

    Article  PubMed  Google Scholar 

  41. Remondino F, El-Hakim S. Image-based 3D modelling: a review. Photogramm Rec. 2006;21:269–91.

    Article  Google Scholar 

  42. Remondino F, El-Hakim SF, Gruen A, Zhang L. Turning images into 3-D models. IEEE Signal Process Mag. 2008;25:55–65.

    Article  Google Scholar 

  43. Ebert LC, Flach P, Schweitzer W, Leipner A, Kottner S, Gascho D, et al. Forensic 3D surface documentation at the Institute of Forensic Medicine in Zurich – workflow and communication pipeline. J Forensic Radiol Imaging. 2016;5:1–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Emma Louise Kessler, M.D. for her generous donation to the Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Kottner.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

The 3D scan data of a human was acquired as part of a forensic judicial investigation into a case. Anonymized results of this are used in this publication. That data usage is conformant with Swiss laws and ethical standards as approved by the Ethics Committee of the Canton of Zurich (written approval, KEK ZH-Nr. 15–0686)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottner, S., Ebert, L.C., Ampanozi, G. et al. VirtoScan - a mobile, low-cost photogrammetry setup for fast post-mortem 3D full-body documentations in x-ray computed tomography and autopsy suites. Forensic Sci Med Pathol 13, 34–43 (2017). https://doi.org/10.1007/s12024-016-9837-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-016-9837-2

Keywords

Navigation