Skip to main content

Advertisement

Log in

Investigation on the utility of permanent maxillary molar cusp areas for sex estimation

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Digital photogrammetric methods were employed to assess the level of sexual dimorphism present in permanent maxillary molar cusp areas of black South Africans (130 males, 105 females). Odontometric standards were then developed for diagnosing sex, based on the cusp area data derived for these teeth. Results demonstrated that all cusp area measurements of both the first and second maxillary molars were significantly dimorphic (P < 0.0001) in this group. Univariate and multivariate discriminant function analyses yielded overall sex prediction accuracy rates between 59.6 and 74.5%. Comparable allocation results were also obtained for binary logistic regression analyses, but with larger classification sex biases. The highest classification accuracies were observed for different combinations of just two cusp areas for the first molar. Allocation rates of formulae derived for second molar dimensions were on average 4.3% lower than those obtained for the first molar. Analyses incorporating cusp areas of both maxillary molars did not improve classification accuracies achieved when only using first molar measurements. The classification rates are below the suggested minimum accuracy of 75–80% for reliable forensic application of a method; however, the derived formulae may provide a useful statistical indication as to the sex of fragmentary remains in which complete or even partial tooth crowns are the only materials available for examination. Furthermore, the formulae can be applied not only to adults but also to subadults (above the age of 3 years) in which the more accurate sex discriminating features of the pelvis and skull are yet to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rösing FW, Graw M, Marré B, et al. Recommendations for the forensic diagnosis of sex and age from skeletons. HOMO-J Comp Hum Biol. 2007;58:75–89.

    Article  Google Scholar 

  2. Ditch LE, Rose JC. A multivariate dental sexing technique. Am J Phys Anthropol. 1972;37:61–4.

    Article  PubMed  CAS  Google Scholar 

  3. Garn SM, Cole PE, Wainwright RL, Guire KE. Sex discrimination effectiveness using combinations of permanent teeth. J Dent Res. 1977;56:697.

    Article  PubMed  CAS  Google Scholar 

  4. Rösing FW, Paul G, Schnutenhaus S. Sexing skeletons by tooth size. In: Radlanski RJ, Renz H, editors. Proceedings of the 10th international symposium on dental morphology. Berlin: M Marketing; 1995. p. 373–6.

    Google Scholar 

  5. Íşcan MY, Kedici PS. Sexual variation in bucco-lingual dimensions in Turkish dentition. Forensic Sci Int. 2003;137:160–4.

    Article  PubMed  Google Scholar 

  6. Prabhu S, Acharya AB. Odontometric sex assessment in Indians. Forensic Sci Int. 2009;192:129.e1–5.

    Article  Google Scholar 

  7. Lund H, Mörnstad H. Gender determination by odontometrics in a Swedish population. J Forensic Odontostomat. 1999;17:30–4.

    CAS  Google Scholar 

  8. Karaman F. Use of diagonal teeth measurements in predicting gender in a Turkish population. J Forensic Sci. 2006;51:630–5.

    Article  PubMed  Google Scholar 

  9. Pereira C, Bernardo M, Pestana D, Santos JC, de Mendonça MC. Contribution of teeth in human forensic identification—discriminant function sexing odontometrical techniques in Portuguese population. J Forensic Leg Med. 2009;. doi:10.1016/j.jflm.2009.09.001.

    PubMed  Google Scholar 

  10. Garn SM, Cole PE, Van Alstine WL. Sex discriminatory effectiveness using combinations of root lengths and crown diameters. Am J Phys Anthropol. 1979;50:115–8.

    Article  Google Scholar 

  11. Duncan C. Sex determination using tooth measurements. In: Anderson S, editor. Current and recent research in osteoarchaeology. Proceedings of the 3rd meeting of the osteoarchaeological research group. Oxford: Oxbow; 1998. p. 51–62.

    Google Scholar 

  12. Harris EF, Couch WM. The relative sexual dimorphism of human incisor crown and root dimensions. Dent Anthropol. 2006;19:87–94.

    Google Scholar 

  13. Biggerstaff RH. The basal area of posterior tooth crown components: the assessment of within tooth variations of premolars and molars. Am J Phys Anthropol. 1969;31:163–70.

    Article  PubMed  CAS  Google Scholar 

  14. Wood BA, Abbott SA, Graham SH. Analysis of the dental morphology of Plio-Pleistocene hominids II. Mandibular molars-study of cusp areas, fissure pattern and cross sectional shape of the crown. J Anat. 1983;137:287–314.

    PubMed  Google Scholar 

  15. Yamada H, Brown T. Contours of maxillary molars studied in Australian Aborigines. Am J Phys Anthropol. 1988;76:399–407.

    Article  PubMed  CAS  Google Scholar 

  16. Mayhall JT, Alvesalo L. Sexual dimorphism in the three-dimensional determinations of the maxillary first molar: cusp height, area, volume and position. In: Smith P, Tchernov E, editors. Structure, function, and evolution of teeth. London: Freund Publishing House; 1991. p. 425–36.

    Google Scholar 

  17. Townsend GC, Richards L, Hughes T. Molar intercuspal dimensions: genetic input to phenotypic variation. J Dent Res. 2003;82:350–5.

    Article  PubMed  CAS  Google Scholar 

  18. Kondo S, Townsend GC, Yamada H. Sexual dimorphism of cusp dimensions in human maxillary molars. Am J Phys Anthropol. 2005;128:870–7.

    Article  PubMed  Google Scholar 

  19. Harris EF, Dinh DP. Intercusp relationships of the permanent maxillary first and second molars in American whites. Am J Phys Anthropol. 2006;130:514–28.

    Article  PubMed  Google Scholar 

  20. Takahashi M, Kondo S, Townsend GC, Kanazawa E. Variability in cusp size of human maxillary molars, with particular reference to the hypocone. Arch Oral Biol. 2007;52:1146–54.

    Article  PubMed  Google Scholar 

  21. Kondo S, Townsend GC. Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. Am J Phys Anthropol. 2006;129:196–203.

    Article  PubMed  Google Scholar 

  22. L’Abbe EN, Loots M, Meiring JH. The pretoria bone collection: a modern South African skeletal sample. HOMO-J Comp Hum Biol. 2005;56:197–205.

    Article  Google Scholar 

  23. Dayal MR, Kegley ADT, Štrkalj G, Bidmos MA, Kuykendall KL. The history, composition of the Raymond A. Dart Collection of Human Skeletons at the University of the Witwatersrand, Johannesburg, South Africa. Am J Phys Anthropol. 2009;140:324–35.

    Article  PubMed  Google Scholar 

  24. De Villiers H. The skull of the South African Negro. Johannesburg: Witwatersrand University Press; 1968.

    Google Scholar 

  25. Jacobson A. The dentition of the South African Negro. Anniston: Higginbotham; 1982.

    Google Scholar 

  26. Franklin D, Higgins PO, Oxnard CE, Dadour I. Discriminant function sexing of the mandible of Indigenous South Africans. Forensic Sci Int. 2008;179:84.e1–5.

    Article  Google Scholar 

  27. Brekhus PJ, Oliver CP, Montelius G. A study of the pattern and combinations of congenitally missing teeth in man. J Dent Res. 1944;23:117–31.

    Article  Google Scholar 

  28. Garn SM, Lewis ME, Vicinus JH. Third molar polymorphism and its significance to dental genetics. J Dent Res. 1963;42:1344–63.

    Article  PubMed  Google Scholar 

  29. Lavelle CLB, Moore WJ. The incidence of agenesis and polygenesis in the primate dentition. Am J Phys Anthropol. 1973;38:671–80.

    Article  PubMed  CAS  Google Scholar 

  30. Hillson S. Dental anthropology. Cambridge: Cambridge University Press; 1996.

    Google Scholar 

  31. Scott GR, Turner CG. The anthropology of modern human teeth. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  32. Scott GR. Dental Morphology. In: Katzenberg MA, Saunders SR, editors. Biological anthropology of the human skeleton. 2nd ed. Hoboken: Wiley; 2008. p. 265–98.

    Chapter  Google Scholar 

  33. Turner CG, Nichol CR, Scott GR. Scoring procedures for key morphological traits of the permanent dentition: the Arizona State University Dental Anthropology System. In: Kelley MA, Larson CS, editors. Advances in dental anthropology. New York: Wiley-Liss; 1991. p. 13–31.

    Google Scholar 

  34. Bollini GA, Rodríguez-Flórez CD, Colantonio SE. Bilateral asymmetry in permanent dentition of 13 pre-conquest samples from Argentina (South America). HOMO-J Comp Hum Biol. 2008;60:127–37.

    Article  Google Scholar 

  35. Cardoso HFV. Sample-specific (universal) metric approaches for determining the sex of immature human skeletal remains using permanent tooth dimensions. J Archaeol Sci. 2008;35:158–68.

    Article  Google Scholar 

  36. Benazzi S, Fantini M, de Crescenzio F, Persiani F, Gruppioni G. Improving the spatial orientation of human teeth using a virtual 3D approach. J Hum Evol. 2008;56:286–93.

    Article  Google Scholar 

  37. Bailey SE, Pilbrow VC, Wood BA. Interobserver error involved in independent attempts to measure cusp base areas of Pan M1s. J Anat. 2004;205:323–31.

    Article  PubMed  Google Scholar 

  38. Wood BA, Engleman CA. Analysis of the dental morphology of Plio-Pleistocene hominids V. Maxillary postcanine tooth morphology. J Anat. 1988;161:1–35.

    PubMed  CAS  Google Scholar 

  39. Mayhall JT. Dental morphology: techniques and strategies. In: Katzenberg MA, Saunders SR, editors. Biological anthropology of the human skeleton. Hoboken: Wiley-Liss; 2000. p. 103–34.

    Google Scholar 

  40. Pilbrow V. Population systematics of chimpanzees using molar morphometrics. J Hum Evol. 2006;51:646–62.

    Article  PubMed  Google Scholar 

  41. Bernal V. Size and shape analysis of human molars: comparing traditional and geometric morphometric techniques. HOMO-J Comp Hum Biol. 2007;58:279–96.

    Article  Google Scholar 

  42. Harris EF, Smith RN. Accounting for measurement error: a critical but often overlooked process. Arch Oral Biol. 2009;54:S107–17.

    Article  PubMed  Google Scholar 

  43. Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Boston: Allyn & Bacon; 2007.

    Google Scholar 

  44. Saunders SR, Hoppa RD. Sex allocation from long bone measurements using logistic regression. Can Soc Forensic Sci. 1997;30:49–60.

    Google Scholar 

  45. Torwalt CRMM, Hoppa RD. A test of sex determination from measurements of chest radiographs. J Forensic Sci. 2005;50:785–90.

    Article  PubMed  Google Scholar 

  46. Walker PL. Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol. 2008;136:39–50.

    Article  PubMed  Google Scholar 

  47. Albanese J, Eklics G, Tuck A. A metric method for sex determination using the proximal femur and fragmentary hipbone. J Forensic Sci. 2008;53:1283–8.

    PubMed  Google Scholar 

  48. Gapert R, Black S, Last J. Sex determination from the occipital condyle; discriminant function analysis in an eighteenth and nineteenth century British sample. Am J Phys Anthropol. 2009;138:384–94.

    Article  PubMed  Google Scholar 

  49. Acharya AB, Prabhu S, Muddapur MV. Odontometric sex assessment from logistic regression analysis. Int J Leg Med. 2010;. doi:10.1007/s00414-010-0417-9.

    Google Scholar 

  50. Kieser JA, Groeneveld HT. The unreliability of sex allocation based on human odontometric data. J Forensic Odontostomat. 1989;7:1–12.

    CAS  Google Scholar 

  51. Macaluso PJ. Sex discrimination potential of permanent maxillary molar cusp diameters. J Forensic Odontostomat. 2010;28, in press.

  52. Franklin D, Freedman L, Milne N. Sexual dimorphism and discriminant function sexing in indigenous South African crania. HOMO-J Comp Hum Biol. 2005;55:213–28.

    Article  CAS  Google Scholar 

  53. Dayal MR, Spocter MA, Bidmos MA. An assessment of sex using the skull of black South Africans by discriminant function analysis. HOMO-J Comp Hum Biol. 2008;59:209–21.

    Article  CAS  Google Scholar 

  54. Franklin D, O’Higgins P, Oxnard CE. Sexual dimorphism in the mandible of indigenous South Africans: a geometric morphometric approach. S Afr J Sci. 2008;104:101–6.

    Google Scholar 

  55. Patriquin ML, Steyn M, Loth SR. Metric analysis of sex differences in South African black and white pelves. Forensic Sci Int. 2005;147:119–27.

    Article  PubMed  CAS  Google Scholar 

  56. Steyn M, Íşcan MY. Osteometric variation in the humerus: sexual dimorphism in South Africans. Forensic Sci Int. 1999;106:77–85.

    Article  PubMed  CAS  Google Scholar 

  57. Barrier ILO, L’Abbé EN. Sex determination from the radius and ulna in a modern South African sample. Forensic Sci Int. 2008;179:85.e1–7.

    Article  CAS  Google Scholar 

  58. Asala SA. Sex determination from the head of the femur of South African whites and blacks. Forensic Sci Int. 2001;117:15–22.

    Article  PubMed  CAS  Google Scholar 

  59. Asala SA, Bidmos MA, Dayal MR. Discriminant function sexing of fragmentary femur of South African blacks. Forensic Sci Int. 2004;145:25–9.

    PubMed  CAS  Google Scholar 

  60. Dayal MR, Bidmos MA. Discriminating sex in South African blacks using patella dimensions. J Forensic Sci. 2005;50:1294–7.

    Article  PubMed  Google Scholar 

  61. Bidmos MA, Dayal MR. Further evidence to show population specificity of discriminant function equations for sex determination using the talus of South African blacks. J Forensic Sci. 2004;49:1165–70.

    PubMed  Google Scholar 

  62. Bidmos MA, Asala SA. Sexual dimorphism of the calcaneus of South African blacks. J Forensic Sci. 2004;49:446–50.

    PubMed  Google Scholar 

  63. De Vito C, Saunders SR. A discriminant function analysis of deciduous teeth to determine sex. J Forensic Sci. 1990;35:845–58.

    PubMed  Google Scholar 

  64. Rogers TL. A visual method of determining the sex of skeletal remains using the distal humerus. J Forensic Sci. 1999;44:57–60.

    PubMed  CAS  Google Scholar 

  65. du Jardin P, Ponsaillé J, Alunni-Perret V, Quatrehomme G. A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int. 2009;192:127.e1–6.

    Article  Google Scholar 

  66. Kemkes A, Göbel T. Metric assessment of the ‘‘mastoid triangle’’ for sex determination: a validation study. J Forensic Sci. 2006;51:985–9.

    Article  PubMed  Google Scholar 

  67. Rao NG, Rao NN, Pai ML, Kotian MS. Mandibular canine index: a clue for establishing sex identity. Forensic Sci Int. 1989;42:249–54.

    Article  PubMed  CAS  Google Scholar 

  68. Pettenati-Soubayroux I, Signoli M, Dutour O. Sexual dimorphism in teeth: discriminatory effectiveness of permanent lower canine size observed in a XVIIIth century osteological series. Forensic Sci Int. 2002;126:227–32.

    Article  PubMed  Google Scholar 

  69. Ateş M, Karaman F, Işcan MY, Erdem TL. Sexual differences in Turkish dentition. Leg Med. 2006;8:288–92.

    Article  Google Scholar 

  70. Acharya AB, Mainali S. Univariate sex dimorphism in the Nepalese dentition and the use of discriminant functions in gender assessment. Forensic Sci Int. 2007;173:47–56.

    Article  PubMed  CAS  Google Scholar 

  71. Schimdt CW. Forensic dental anthropology: issues and guidelines. In: Irish JD, Nelson GC, editors. Technique and application in dental anthropology. Cambridge: Cambridge University Press; 2008. p. 266–92.

    Chapter  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Department of Anatomical Sciences, University of the Witwatersrand for permission to study the Raymond A. Dart Collection of Human Skeletons, and Mr. Brendon Billings for his generosity and help during data collection. The author also wishes to express his gratitude to Professor Maryna Steyn for granting access to the Pretoria Bone Collection, housed in the Department of Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria and Mr. Marius Loots and Dr. Ericka L’Abbe of the same department for their hospitality and assistance with the skeletal material in their care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. James Macaluso Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macaluso, P.J. Investigation on the utility of permanent maxillary molar cusp areas for sex estimation. Forensic Sci Med Pathol 7, 233–247 (2011). https://doi.org/10.1007/s12024-010-9204-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9204-7

Keywords

Navigation