Skip to main content

Advertisement

Log in

Immunohistochemical Expression of Choline Acetyltransferase and Catecholamine-Synthesizing Enzymes in Head-and-Neck and Thoracoabdominal Paragangliomas and Pheochromocytomas

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Paragangliomas (PGLs) are neural-crest-derived, non-epithelial neuroendocrine tumors distributed along the parasympathetic and sympathetic nerves. Head-and-neck PGLs (HNPGLs) have been recognized as nonchromaffin, nonfunctional, parasympathetic tumors. By contrast, thoracoabdominal paragangliomas and pheochromocytomas (PPGLs) are chromaffin, functional, sympathetic tumors. Although HNPGLs and PPGLs have the same histological structure, the zellballen pattern, composed of chief and sustentacular cells surrounded by abundant capillaries, the pathobiological differences between these types of PGLs remain unclarified. To determine the phenotypic features of these PGLs, we performed an immunohistochemical study using specific antibodies against choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, and enzymes for the catecholamine-synthesis, tyrosine hydroxylase (TH), and dopamine beta-hydroxylase (DBH), in 34 HNPGLs from 31 patients, 12 thoracoabdominal PGLs from 12 patients, and 26 pheochromocytomas from 22 patients. The expression of ChAT, TH, and DBH was 100%, 23%, and 10% in the HNPGLs; 12%, 100%, and 100% in the pheochromocytomas; and 25%, 67%, and 100% in the thoracoabdominal PGLs, respectively. These results designate HNPGLs as acetylcholine-producing parasympathetic tumors, in contrast to PPGLs being catecholamine-producing tumors. The other most frequently used neuroendocrine markers are synaptophysin and chromogranin A expressed 100% and 80%, respectively, and synaptophysin was superior to chromogranin A in HNPGLs. This is the first report of HNPGLs being acetylcholine-producing tumors. Immunohistochemistry of ChAT could be greatly useful for pathologic diagnosis of HNPGL. Whether measurement of acetylcholine levels in the blood or urine could be a tumor marker of HNPGLs should be investigated soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valero C, Ganly I, Shah JP (2020)Head and neck paragangliomas: 30-year experience. Head Neck 42: 2486–2495. https://doi.org/10.1002/hed.26277

  2. Garcia-Carbonero R, Matute Teresa F, Mercader-Cidoncha E, Mitjavila-Casanovas M, Robledo M, Tena I, Alvarez-Escola C, Arístegui M, Bella-Cueto MR, Ferrer-Albiach C, Hanzu FA (2021) Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas. Clin Transl Oncol 23:1995–2019. https://doi.org/10.1007/s12094-021-02622-9

  3. Williams MD (2017) Paragangliomas of the Head and Neck: An Overview from Diagnosis to Genetics. Head Neck Pathol 3:278–287. https://doi.org/10.1007/s12105-017-0803-4

  4. Kimura N, Capella C, Gill A, Komminoth P, Lam AKY,Tischler AS, Williams MD (2017) Paraganglion tumours. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ (ed) WHO Classi-fication of Head and Neck Tumours. 4th eds. IARC Press, Lyon, pp 276–284

  5. Kimura N, Capella C, De Lellis R, Epstein J, Gill A, Kawashima A, Koch C, Komminoth P, Lam A, Merino M et al (2017) Extraadrenal paragangliomas. In Lloyd RV, Osamura RY, Kloppel G, Rosai J. (ed) WHO Classifications of Tumours of Endocrine Organs. 4th edn. IARC Press, Lyon, pp190-195

    Google Scholar 

  6. Kimura H, McGeer PL, Peng F, McGeer EG (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208:1057–1059. https://doi.org/10.1126/science

  7. Eckenstein F, Barde YA, Thoenen H (1981) Production of specific antibodies to choline acetyltransferase purified from pig brain. Neuroscience 6:993–1000. https://doi.org/10.1016/0306-4522(81)90065-8

    Article  CAS  PubMed  Google Scholar 

  8. Levey, A. I., Aoki, M., Fitch, F. W., and Wainer, B. H (1981) The production of monoclonal antibodies reactive with bovine choline acetyltransferase. Brain Res 218:383–387. https://doi.org/10.1016/0006-8993(81)91316-0

  9. Porter AJ, Wattchow DA, Brookes SJ, Schemann M, Costa M (1996) Choline acetyltransferase immunoreactivity in the human small and large intestine. Gastroenterology 111:401–408. https://doi.org/10.1053/gast.1996.v111

    Article  CAS  PubMed  Google Scholar 

  10. Bellier JP, Kimura H (2011) Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 42:225–235. https://doi.org/10.1016/j.jchemneu.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  11. Bellier JP, Yuan PQ, Mukaisho K, Tooyama I, Taché Y, Kimura H (2019) A Novel antiserum against a predicted human peripheral choline acetyltransferase (hpChAT) for labeling neuronal structures in human colon. Front Neuroanat 13:37. https://doi.org/10.3389/fnana.2019.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kimura N, Sasano N, Miura Y, Kobayashi K (1984) Adrenal and extra-adrenal pheochromocytomas: an ultrastructural and formaldehyde-induced fluorescence study with catecholamine content. Tohoku J Exp Med 142:1-14. https://doi.org/10.1620/tjem.142.1

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto S, Tanaka K, Yamamoto A, Nakada H, Uchida M, Tashiro Y (1987) Immunoelectron microscopic localization of dopamine beta-hydroxylase and chromogranin A in adrenomedullary chromaffin cells. Cell Struct Funct. 12:483-96. https://doi.org/10.1247/csf.12.483

    Article  CAS  PubMed  Google Scholar 

  14. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500-4. https://doi.org/10.1073/pnas.83.10.3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins--widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 58:95-121. https://doi.org/10.1007/BF02890062

    Article  CAS  PubMed  Google Scholar 

  16. Kimura N, Sasano N, Yamada R, Satoh J (1988) Immunohistochemical study of chromogranin in 100 cases of pheochromocytoma, carotid body tumour, medullary thyroid carcinoma and carcinoid tumour. Virchows Arch A Pathol Anat Histopathol 413:33-38. https://doi.org/10.1007/BF00844279

    Article  CAS  PubMed  Google Scholar 

  17. Kimura N, Miura W, Noshiro T, Mizunashi K, Hanew K, Shimizu K, Watanabe T, Shibukawa S, Sohn HE, Abe K, Miura Y, Nagura H (1997) Plasma chromogranin A in pheochromocytoma, primary hyperparathyroidism and pituitary adenoma in com-parison with catecholamine, parathyroid hormone and pituitary hormones. Endocr J 44:319–27. https://doi.org/10.1507/endocrj.44.319

  18. Bílek R, Vlček P, Šafařík L, Michalský D, Novák K, Dušková J, Václavíková E, Widimský J Jr, Zelinka T (2019) Chromogranin A in the Laboratory Diagnosis of Pheochromocytoma and Paraganglioma. Cancers (Basel). 11:586. https://doi.org/10.3390/cancers11040586

  19. Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, Rakugi H, Ikeda Y, Tanabe A, Nigawara T, Ito S, Kimura I, Naruse M (2014) Phaeochromocytoma Study Group in Japan. Pathological grading for predicting metastasis in phaeochromo-cytoma and paraganglioma. Endocr Relat Cancer 21:405-14. https://doi.org/10.1530/ERC-13-0494

    Article  PubMed  Google Scholar 

  20. Kimura N (2021) Dopamine beta-hydroxylase: An essential and optimal immunohistochemical marker for pheochromocytoma and sympathetic paraganglioma. Endocr Pathol 32:258-261. https://doi.org/10.1007/s12022-020-09655-w

    Article  CAS  PubMed  Google Scholar 

  21. Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo AP (2020). An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 34: 101416. https://doi.org/10.1016/j.beem.2020.101416

  22. Kimura N, Takekoshi K, Horii A, Morimoto R, Imai T, Oki Y, Saito T, Midorikawa S, Arao T, Sugisawa C, Yamada M, Otuka Y, Kurihara I, Sugano K, Nakane M, Fukuuchi A, Kitamoto T, Saito J, Nishikawa T, Naruse M (2014) Clinicopathological study of SDHB mutation-related pheochromocytoma and sympathetic paraganglioma. Endocr Relat Cancer 21: L13–6. https://doi.org/10.1530/ERC-13-0530

  23. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM, Sleddens HF, Derkx P, Rivière J, Dannenberg H, Petri BJ, Komminoth P, Pacak K, Hop WC, Pollard PJ, Mannelli M, Bayley JP, Perren A, Niemann S, Verhofstad AA, de Bruïne AP, Maher ER, Tissier F, Méatchi T, Badoual C, Bertherat J, Amar L, Alataki D, Van Marck E, Ferrau F, François J, de Herder WW, Peeters MP, van Linge A, Lenders JW, Gimenez-Roqueplo AP, de Krijger RR, Dinjens WN (2009) Lancet Oncol 10: 764-71. https://doi.org/10.1016/S1470-2045(09)70164-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, Tissier F, Volante M, Matias-Guiu X, Smid M, Favier J, Rapizzi E, Libe R, Currás-Freixes M, Aydin S, Huynh T, Lichtenauer U, van Berkel A, Canu L, Domingues R, Clifton-Bligh RJ, Bialas M, Vikkula M, Baretton G, Papotti M, Nesi G, Badoual C, Pacak K, Eisenhofer G, Timmers HJ, Beuschlein F, Bertherat J, Mannelli M, Robledo M, Gimenez-Roqueplo AP, Dinjens WN, Korpershoek E, de Krijger RR (2015) SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 28:807-21. https://doi.org/10.1038/modpathol.2015.41

    Article  CAS  PubMed  Google Scholar 

  25. Favier J, Meatchi T, Robidel E, Badoual C, Sibony M, Nguyen AT, Gimenez-Roqueplo AP, Burnichon N (2020) Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol 33: 57–64. https://doi.org/10.1038/s41379-019-0343-4

  26. Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Human Genetics.113: 228–37. https://doi.org/10.1007/s00439-003-0969-6

    Article  PubMed  Google Scholar 

  27. Opotowsky AR, Moko LE, Ginns J, Rosenbaum M, Greutmann M, Aboulhosn J, Hageman A, Kim Y, Deng LX, Grewal J, Zaidi AN, Almansoori G, Oechslin E, Earing M, Landzberg MJ, Singh MN, Wu F, Vaidya A (2015) Pheochromocytoma and paraganglioma in cyanotic congenital heart disease. J Clin Endocrinol Metab 100:1325-34. https://doi.org/10.1210/jc.2014-3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osinga TE, Korpershoek E, de Krijger RR, Kerstens MN, Dullaart RP, Kema IP, van der Laan BF, van der Horst-Schrivers AN, Links TP (2015) Catecholamine-synthesizing enzymes are expressed in parasympathetic head and neck paraganglioma tissue. Neuroendocrinology. 101: 289-95. https://doi.org/10.1159/000377703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Azuma M, MT. CIAC, Department of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate, Japan, for the technical support in immunohistochemistry.

Funding

This study was supported in part by a Grant-in-Aid from the Japan Agency for Medical Research and Development (AMED) under Grant Number 20ek0109352h0003.

Author information

Authors and Affiliations

Authors

Contributions

NK and KS designed the study. KS, KK, YO, CS, JS, ST, HA, SS, TY, TK, and MN collected materials and clinical data. KT analyzed gene mutations. NK analyzed pathologic data and interpretation, and wrote the first draft of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Noriko Kimura.

Ethics declarations

Institutional Review Board Statement

The paraffin sections used in this study were obtained from archival materials. Institutional Ethical Board in National Hospital Organization Hakodate Hospital approved the research, #R3-0730001.

Informed Consent Statement

Informed consent for the research was obtained from all patients at each institute.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, N., Shiga, K., Kaneko, Ki. et al. Immunohistochemical Expression of Choline Acetyltransferase and Catecholamine-Synthesizing Enzymes in Head-and-Neck and Thoracoabdominal Paragangliomas and Pheochromocytomas. Endocr Pathol 32, 442–451 (2021). https://doi.org/10.1007/s12022-021-09694-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-021-09694-x

Keywords

Navigation