Skip to main content
Log in

Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan’s population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wells SA, Jr., Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid: official journal of the American Thyroid Association 25 (6):567–610. https://doi.org/10.1089/thy.2014.0335

    Article  Google Scholar 

  2. de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM (2006) RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocrine reviews 27 (5):535–560. https://doi.org/10.1210/er.2006-0017

    Article  CAS  PubMed  Google Scholar 

  3. Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, Mao R (2009) Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Human mutation 30 (4):548–556. https://doi.org/10.1002/humu.20928

    Article  CAS  PubMed  Google Scholar 

  4. Moura MM, Cavaco BM, Leite V (2015) RAS proto-oncogene in medullary thyroid carcinoma. Endocrine-related cancer 22 (5):R235–R252. https://doi.org/10.1530/ERC-15-0070

    Article  CAS  PubMed  Google Scholar 

  5. Chang YS, Lin IL, Yeh KT, Chang JG (2013) Rapid detection of K-, N-, H-RAS, and BRAF hotspot mutations in thyroid cancer using the multiplex primer extension. Clinical biochemistry 46 (15):1572–1577. https://doi.org/10.1016/j.clinbiochem.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  6. Chang YS, Huang HD, Yeh KT, Chang JG (2016) Genetic alterations in endometrial cancer by targeted next-generation sequencing. Experimental and molecular pathology 100 (1):8–12. https://doi.org/10.1016/j.yexmp.2015.11.026

    Article  CAS  PubMed  Google Scholar 

  7. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, Rubinstein JC, Choi M, Kiss N, Nelson-Williams C, Mane S, Rimm DL, Prasad ML, Hoog A, Zedenius J, Larsson C, Korah R, Lifton RP, Carling T (2015) Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Human molecular genetics 24 (8):2318–2329. https://doi.org/10.1093/hmg/ddu749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shanmugam V, Ramanathan RK, Lavender NA, Sinari S, Chadha M, Liang WS, Kurdoglu A, Izatt T, Christoforides A, Benson H, Phillips L, Baker A, Murray C, Hostetter G, Von Hoff DD, Craig DW, Carpten JD (2014) Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer. BMC medical genomics 7:36. https://doi.org/10.1186/1755-8794-7-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nature genetics 45 (10):1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  Google Scholar 

  10. International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, Watanabe K, Yang H, Yuen MM, Knoppers BM, Bobrow M, Cambon-Thomsen A, Dressler LG, Dyke SO, Joly Y, Kato K, Kennedy KL, Nicolas P, Parker MJ, Rial-Sebbag E, Romeo-Casabona CM, Shaw KM, Wallace S, Wiesner GL, Zeps N, Lichter P, Biankin AV, Chabannon C, Chin L, Clement B, de Alava E, Degos F, Ferguson ML, Geary P, Hayes DN, Hudson TJ, Johns AL, Kasprzyk A, Nakagawa H, Penny R, Piris MA, Sarin R, Scarpa A, Shibata T, van de Vijver M, Futreal PA, Aburatani H, Bayes M, Botwell DD, Campbell PJ, Estivill X, Gerhard DS, Grimmond SM, Gut I, Hirst M, Lopez-Otin C, Majumder P, Marra M, McPherson JD, Nakagawa H, Ning Z, Puente XS, Ruan Y, Shibata T, Stratton MR, Stunnenberg HG, Swerdlow H, Velculescu VE, Wilson RK, Xue HH, Yang L, Spellman PT, Bader GD, Boutros PC, Campbell PJ, Flicek P, Getz G, Guigo R, Guo G, Haussler D, Heath S, Hubbard TJ, Jiang T, Jones SM, Li Q, Lopez-Bigas N, Luo R, Muthuswamy L, Ouellette BF, Pearson JV, Puente XS, Quesada V, Raphael BJ, Sander C, Shibata T, Speed TP, Stein LD, Stuart JM, Teague JW, Totoki Y, Tsunoda T, Valencia A, Wheeler DA, Wu H, Zhao S, Zhou G, Stein LD, Guigo R, Hubbard TJ, Joly Y, Jones SM, Kasprzyk A, Lathrop M, Lopez-Bigas N, Ouellette BF, Spellman PT, Teague JW, Thomas G, Valencia A, Yoshida T, Kennedy KL, Axton M, Dyke SO, Futreal PA, Gerhard DS, Gunter C, Guyer M, Hudson TJ, McPherson JD, Miller LJ, Ozenberger B, Shaw KM, Kasprzyk A, Stein LD, Zhang J, Haider SA, Wang J, Yung CK, Cros A, Liang Y, Gnaneshan S, Guberman J, Hsu J, Bobrow M, Chalmers DR, Hasel KW, Joly Y, Kaan TS, Kennedy KL, Knoppers BM, Lowrance WW, Masui T, Nicolas P, Rial-Sebbag E, Rodriguez LL, Vergely C, Yoshida T, Grimmond SM, Biankin AV, Bowtell DD, Cloonan N, deFazio A, Eshleman JR, Etemadmoghadam D, Gardiner BB, Kench JG, Scarpa A, Sutherland RL, Tempero MA, Waddell NJ, Wilson PJ, McPherson JD, Gallinger S, Tsao MS, Shaw PA, Petersen GM, Mukhopadhyay D, Chin L, DePinho RA, Thayer S, Muthuswamy L, Shazand K, Beck T, Sam M, Timms L, Ballin V, Lu Y, Ji J, Zhang X, Chen F, Hu X, Zhou G, Yang Q, Tian G, Zhang L, Xing X, Li X, Zhu Z, Yu Y, Yu J, Yang H, Lathrop M, Tost J, Brennan P, Holcatova I, Zaridze D, Brazma A, Egevard L, Prokhortchouk E, Banks RE, Uhlen M, Cambon-Thomsen A, Viksna J, Ponten F, Skryabin K, Stratton MR, Futreal PA, Birney E, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Martin S, Reis-Filho JS, Richardson AL, Sotiriou C, Stunnenberg HG, Thoms G, van de Vijver M, van't Veer L, Calvo F, Birnbaum D, Blanche H, Boucher P, Boyault S, Chabannon C, Gut I, Masson-Jacquemier JD, Lathrop M, Pauporte I, Pivot X, Vincent-Salomon A, Tabone E, Theillet C, Thomas G, Tost J, Treilleux I, Calvo F, Bioulac-Sage P, Clement B, Decaens T, Degos F, Franco D, Gut I, Gut M, Heath S, Lathrop M, Samuel D, Thomas G, Zucman-Rossi J, Lichter P, Eils R, Brors B, Korbel JO, Korshunov A, Landgraf P, Lehrach H, Pfister S, Radlwimmer B, Reifenberger G, Taylor MD, von Kalle C, Majumder PP, Sarin R, Rao TS, Bhan MK, Scarpa A, Pederzoli P, Lawlor RA, Delledonne M, Bardelli A, Biankin AV, Grimmond SM, Gress T, Klimstra D, Zamboni G, Shibata T, Nakamura Y, Nakagawa H, Kusada J, Tsunoda T, Miyano S, Aburatani H, Kato K, Fujimoto A, Yoshida T, Campo E, Lopez-Otin C, Estivill X, Guigo R, de Sanjose S, Piris MA, Montserrat E, Gonzalez-Diaz M, Puente XS, Jares P, Valencia A, Himmelbauer H, Quesada V, Bea S, Stratton MR, Futreal PA, Campbell PJ, Vincent-Salomon A, Richardson AL, Reis-Filho JS, van de Vijver M, Thomas G, Masson-Jacquemier JD, Aparicio S, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Stunnenberg HG, van't Veer L, Easton DF, Spellman PT, Martin S, Barker AD, Chin L, Collins FS, Compton CC, Ferguson ML, Gerhard DS, Getz G, Gunter C, Guttmacher A, Guyer M, Hayes DN, Lander ES, Ozenberger B, Penny R, Peterson J, Sander C, Shaw KM, Speed TP, Spellman PT, Vockley JG, Wheeler DA, Wilson RK, Hudson TJ, Chin L, Knoppers BM, Lander ES, Lichter P, Stein LD, Stratton MR, Anderson W, Barker AD, Bell C, Bobrow M, Burke W, Collins FS, Compton CC, DePinho RA, Easton DF, Futreal PA, Gerhard DS, Green AR, Guyer M, Hamilton SR, Hubbard TJ, Kallioniemi OP, Kennedy KL, Ley TJ, Liu ET, Lu Y, Majumder P, Marra M, Ozenberger B, Peterson J, Schafer AJ, Spellman PT, Stunnenberg HG, Wainwright BJ, Wilson RK, Yang H (2010) International network of cancer genome projects. Nature 464 (7291):993–998. https://doi.org/10.1038/nature08987

    Article  CAS  Google Scholar 

  11. Basho RK, Eterovic AK, Meric-Bernstam F (2015) Clinical applications and limitations of next-generation sequencing. American Journal of Hematology/Oncology 11 (3):17–22

  12. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, Westra WH, Wood LD, Hruban RH, Tufano RP, Robinson B, Dralle H, Toledo SP, Toledo RA, Morris LG, Ghossein RA, Fagin JA, Chan TA, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N, Nelkin BD, Ball DW (2013) Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. The Journal of clinical endocrinology and metabolism 98 (2):E364–E369. https://doi.org/10.1210/jc.2012-2703

    Article  CAS  PubMed  Google Scholar 

  13. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE (2013) Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. The Journal of clinical endocrinology and metabolism 98 (11):E1852–E1860. https://doi.org/10.1210/jc.2013-2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simbolo M, Mian C, Barollo S, Fassan M, Mafficini A, Neves D, Scardoni M, Pennelli G, Rugge M, Pelizzo MR, Cavedon E, Fugazzola L, Scarpa A (2014) High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Archiv: an international journal of pathology 465 (1):73–78. https://doi.org/10.1007/s00428-014-1589-3

    Article  CAS  Google Scholar 

  15. Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D, Ji Y, Kim DH, Park WY, Shin HT, Kim KM, Ahn MJ, Park K, Sun JM (2015) Identification of Driving ALK Fusion Genes and Genomic Landscape of Medullary Thyroid Cancer. PLoS genetics 11 (8):e1005467. https://doi.org/10.1371/journal.pgen.1005467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25 (14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  Google Scholar 

  17. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20 (9):1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome research 22 (3):568–576. https://doi.org/10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38 (16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic acids research 29 (1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research 42 (Database issue):D980–D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  22. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic acids research 43 (Database issue):D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling 6 (269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nature methods 7 (4):248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 4 (7):1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  26. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46 (3):310-315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, Nikiforova MN (2017) Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of molecular diagnostics: JMD 19 (1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I, Demmers J, Keijzer N, Jiang K, Poser I, Hyman AA, Hoogenraad CC, King SJ, Akhmanova A (2012) BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular biology of the cell 23 (21):4226–4241. https://doi.org/10.1091/mbc.E12-03-0210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rossor AM, Oates EC, Salter HK, Liu Y, Murphy SM, Schule R, Gonzalez MA, Scoto M, Phadke R, Sewry CA, Houlden H, Jordanova A, Tournev I, Chamova T, Litvinenko I, Zuchner S, Herrmann DN, Blake J, Sowden JE, Acsadi G, Rodriguez ML, Menezes MP, Clarke NF, Auer Grumbach M, Bullock SL, Muntoni F, Reilly MM, North KN (2015) Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain: a journal of neurology 138 (Pt 2):293–310. https://doi.org/10.1093/brain/awu356

    Article  Google Scholar 

  30. Cavatorta AL, Di Gregorio A, Bugnon Valdano M, Marziali F, Cabral M, Bottai H, Cittadini J, Nocito AL, Gardiol D (2017) DLG1 polarity protein expression associates with the disease progress of low-grade cervical intraepithelial lesions. Experimental and molecular pathology 102 (1):65–69. https://doi.org/10.1016/j.yexmp.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  31. Pekow J, Meckel K, Dougherty U, Huang Y, Chen X, Almoghrabi A, Mustafi R, Ayaloglu-Butun F, Deng Z, Haider HI, Hart J, Rubin DT, Kwon JH, Bissonnette M (2017) miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clinical cancer research: an official journal of the American Association for Cancer Research 23 (17):5281–5291. https://doi.org/10.1158/1078-0432.ccr-17-0171

    Article  CAS  Google Scholar 

  32. Ren Y, Cheng L, Rong Z, Li Z, Li Y, Li H, Wang Z, Chang Z (2006) hSef co-localizes and interacts with Ras in the inhibition of Ras/MAPK signaling pathway. Biochemical and biophysical research communications 347 (4):988–993. https://doi.org/10.1016/j.bbrc.2006.06.193

    Article  CAS  PubMed  Google Scholar 

  33. Dhanoa BS, Cogliati T, Satish AG, Bruford EA, Friedman JS (2013) Update on the Kelch-like (KLHL) gene family. Human genomics 7:13. https://doi.org/10.1186/1479-7364-7-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang C, Liu J, Huang G, Zhao Y, Yue X, Wu H, Li J, Zhu J, Shen Z, Haffty BG, Hu W, Feng Z (2016) Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes & development 30 (17):1956–1970. https://doi.org/10.1101/gad.283283.116

    Article  CAS  Google Scholar 

  35. Su Y, Wagner ER, Luo Q, Huang J, Chen L, He BC, Zuo GW, Shi Q, Zhang BQ, Zhu G, Bi Y, Luo J, Luo X, Kim SH, Shen J, Rastegar F, Huang E, Gao Y, Gao JL, Yang K, Wietholt C, Li M, Qin J, Haydon RC, He TC, Luu HH (2011) Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma. Oncogene 30 (37):3907–3917. https://doi.org/10.1038/onc.2011.97

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki A, Mimaki S, Yamane Y, Kawase A, Matsushima K, Suzuki M, Goto K, Sugano S, Esumi H, Suzuki Y, Tsuchihara K (2013) Identification and characterization of cancer mutations in Japanese lung adenocarcinoma without sequencing of normal tissue counterparts. PloS one 8 (9):e73484. https://doi.org/10.1371/journal.pone.0073484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang G, Liu L, Buyse IM, Simon D, Huang S (1999) Decreased RIZ1 expression but not RIZ2 in hepatoma and suppression of hepatoma tumorigenicity by RIZ1. International journal of cancer 83 (4):541–546

    Article  CAS  PubMed  Google Scholar 

  38. Chadwick RB, Jiang GL, Bennington GA, Yuan B, Johnson CK, Stevens MW, Niemann TH, Peltomaki P, Huang S, de la Chapelle A (2000) Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 97 (6):2662–2667. https://doi.org/10.1073/pnas.040579497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J, Buyse IM, Fletcher JA, Liu J, Bronson R, Chadwick RB, de la Chapelle A, Zhang X, Speleman F, Huang S (2001) Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes & development 15 (17):2250–2262. https://doi.org/10.1101/gad.870101

    Article  CAS  Google Scholar 

  40. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, al (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science (New York, NY) 269 (5226):973–977

    Article  CAS  Google Scholar 

  41. Li P, Lin X, Zhang JR, Li Y, Lu J, Huang FC, Zheng CH, Xie JW, Wang JB, Huang CM (2016) The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer. Oncotarget 7 (9):10650-10662. https://doi.org/10.18632/oncotarget.7298

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xia X, Qian S, Soriano S, Wu Y, Fletcher AM, Wang XJ, Koo EH, Wu X, Zheng H (2001) Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 98 (19):10863–10868. https://doi.org/10.1073/pnas.191284198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suda T, Tsunoda T, Uchida N, Watanabe T, Hasegawa S, Satoh S, Ohgi S, Furukawa Y, Nakamura Y, Tahara H (2006) Identification of secernin 1 as a novel immunotherapy target for gastric cancer using the expression profiles of cDNA microarray. Cancer science 97 (5):411–419. https://doi.org/10.1111/j.1349-7006.2006.00194.x

    Article  CAS  PubMed  Google Scholar 

  44. Miyoshi N, Ishii H, Mimori K, Sekimoto M, Doki Y, Mori M (2010) SCRN1 is a novel marker for prognosis in colorectal cancer. Journal of surgical oncology 101 (2):156–159. https://doi.org/10.1002/jso.21459

    Article  CAS  PubMed  Google Scholar 

  45. Shi L, Zhang W, Zou F, Mei L, Wu G, Teng Y (2016) KLHL21, a novel gene that contributes to the progression of hepatocellular carcinoma. BMC cancer 16 (1):815. https://doi.org/10.1186/s12885-016-2851-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported in part by China Medical University Hospital grant (DMR-107-100) and Taiwan Ministry of Health and Welfare Clinical Trial Center (MOHW107-TDU-B-212-123004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Gowth Chang.

Ethics declarations

This study was approved by the Institutional Review Board of Changhua Christian Hospital. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Competing Interests

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 3049 kb)

ESM 2

(XLSX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YS., Chang, CC., Huang, HY. et al. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 29, 324–331 (2018). https://doi.org/10.1007/s12022-018-9543-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-018-9543-6

Keywords

Navigation