Skip to main content
Log in

Differential expression of human telomerase catalytic subunit mRNA by In situ hybridization in pheochromocytomas

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In pheochromocytomas, it is very difficult to predict malignant potential by conventional histology or immunohistochemical and molecular markers. We investigated the expression of human telomerase catalytic component (hTERT) mRNA, hTERT protein, Ki-67 antigen, and p27kip1 in pheochromocytomas (27 benign, 7 suspected malignant, and 7 malignant), and evaluated the possibility of expressions of these proteins, and hTERT mRNA serve as diagnostic markers for predicting the biological behavior of these tumors. All tumors showed the classical histology and typical immunohistochemical pattern. By in situ hybridization, hTERT mRNA was expressed in 5/7 malignant tumors (defined as the presence of metastasis and/or extensive local invasion) as compared with 3/27 benign tumors. We examined the hTERT by immunohistochemistry to confirm the mRNA. hTERT mRNA expression was correlated with hTERT protein expression. All benign tumors exhibited no immunopositivity or <1% of cells stained for Ki-67 antigen. Six out of seven malignant tumors have shown either hTERT mRNA expression or Ki-67 immunoreactivity While no statistical difference in p27kip1 expressions was observed among benign, malignant, and suspected malignant tumors, there was a statistical difference between the normal adrenal medulla samples and tumors (p<0.001). Thus, hTERT mRNA detection by in situ hybridization, hTERT expression, and Ki-67 antigen expression are all useful tools for differentiating malignant from benign pheochromocytomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura TM, Cech TR. Reversing time: origin of telomerase. Cell 92: 587–590, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Meyerson M. Role of relomerase in normal and cancer cells. J Clin Oncol 18: 2626–2634, 2000.

    PubMed  CAS  Google Scholar 

  3. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Tang SJ, Dumot JA, Wang L, et al. Telomerase activity in pancreatic endocrine tumors. Am J Gastroenterol 97(4):1022–1030, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Umbricht CB, Conrad GT, Clark DP, et al. Human telomerase reverse transcriptase gene expression and the surgical management of suspicious thyroid tumors. Clin Cancer Res 10:5762–5768, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Orlando C, Gelmini S. Telomerase in endocrine and endocrine-dependent tumors. J Steroid Biochem Mol Biol 78(3):201–214, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Michalides RJ. Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer. J Clin Pathol 52:555–568, 1999.

    PubMed  CAS  Google Scholar 

  8. Hommura F, Dosaka-Akita H, Mishina T, et al. Prognostic significance of p27KIP1 protein and Ki-67 growth fraction in non-small cell lung cancers. Clin Cancer Res 6:4073–4081, 2000.

    PubMed  CAS  Google Scholar 

  9. Manne U, Jhala NC, Jones J, et al. Prognostic significance of p27kip-1 expression in colorectal adenocarcinomas is associated with tumor stage. Clin Cancer Res 10:1743–1752, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Schrantz N, Beney GE, Auffredou MT, et al. The expression of p18INK4 and p27kip1 cyclin-dependent kinase inhibitors is regulated differently during human B cell differentiation. J Immunol 165:4346–4352, 2000.

    PubMed  CAS  Google Scholar 

  11. Motti ML, Califano D, Troncone G, et al. Complex regulation of the cyclin-dependent kinase inhbitor p27kipl in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kipl expression and localization. Am J Pathol 166:737–749, 2005.

    PubMed  CAS  Google Scholar 

  12. Lloyd RV, Jin L, Qian X, et al. Aberrant p27kipl expression in endocrine and other tumors. Am J Pathol 150:401–407, 1997.

    PubMed  CAS  Google Scholar 

  13. Pace V, Pharmates E, Germann PG. Pheochromocytomas and ganglioneuromas in the aging rats: morphological and immunohistochemical characterization. Toxicol Pathol 30(4):492–500, 2002.

    PubMed  Google Scholar 

  14. Isobe K, Yashiro T, Omura S, et al. Expression of the human telomerase reverse transcriptase in pheochromocytoma and neuroblastoma tissues. Endocr J 51(1):47–52, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Elder EE, Xu D, Hoog A, et al. KI-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod Pathol 16(3):246–255, 2003.

    Article  PubMed  Google Scholar 

  16. Thompson LD. Pheochromocytoma of the adrenal gland scaled score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 26(5):551–566, 2002.

    Article  PubMed  Google Scholar 

  17. Linnoila RI, Keiser HR, Steinberg SM, et al. Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 21:1168–1180, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. van der Harst E, Bruining HA, Jaap Bonjer H, et al. Proliferative index in phaeochromocytomas: does it predict the occurrence of metastases? J Pathol 191:175–180, 2000.

    Article  PubMed  Google Scholar 

  19. Kimura N, Watanabe T, Noshiro T, et al. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extradrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 16(1):23–32, 2005.

    Article  PubMed  Google Scholar 

  20. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Hadar T, Shvero J, Yaniv E, et al. Expression of p53, Ki-67 and Bcl-2 in parathyroid adenoma and residual normal tissue. Pathol. Oncol Res. 11(1):45–49, 2005.

    Article  PubMed  Google Scholar 

  22. Bravaccini S, Sanchin MA, Amadori A, et al. Potential of telomerase expression and activity in cervical specimens as a diagnostic tool. J Clin Pathol 58(9):911–914, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Culhaci N, Sagol O, Karademir S, et al. Expression of transforming growth factor beta-1 and p27Kipl in pancreatic adenocarcinomas: relation with cell-cycle-associated proteins and clinicopathologic characteristics. BMC Cancer 5:98, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Catzavelos C, Bhattacharya N, Ung YC, et al. Decreased levels of the cell-cycle inhibitor p27Kipl protein: prognostic implications in primary breast cancer. Nat Med 3:227–230, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Porter PL, Malone KE, Heagerty PJ, et al. Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222–225, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 24(7):1167–1176, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Hiyama E, Hiyama K, Yokoyama T, et al. Correlating relomerase activity levels with human neuroblastoma outcomes. Nat Med 1:249–255, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Boltze C, Mundschenk J, Unger N, et al. Expression profile of the telomeric complex discriminates between benign and malignant pheochromocytoma. J Clin Endocrinol Metabol 88(9):4280–4286, 2003.

    Article  CAS  Google Scholar 

  29. Kubota Y, Nakada T, Sasagawa I, et al. Elevated levels of telomerase activity in malignant pheochromocytoma, Cancer 82:176–179, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Bamberger CM, Else T, Bamberger AM, et al. Telomerase activity in benign and malignant adrenal tumors. Exp Clin Endocrinol Diabetes 107:272–275, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Isola JJ, Helin HJ, Helle MJ, et al. Evaluation of cell proliferation in breast carcinoma. Comparison of Ki-67 immunohistochemical study, DNA flow cytometric analysis and mitotic count. Cancer 65:1180–1184, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuojie Luo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Li, J., Qin, Y. et al. Differential expression of human telomerase catalytic subunit mRNA by In situ hybridization in pheochromocytomas. Endocr Pathol 17, 387–398 (2006). https://doi.org/10.1007/s12022-006-0010-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-006-0010-4

Key Words

Navigation