Skip to main content
Log in

Decentralized Brain Age Estimation Using MRI Data

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

UPENN-PNC (Satterthwaite et al., 2014) and UKBiobank (Miller et al., 2016) are openly available MRI datasets which can be accessed upon request. Please contact the authors of Satterthwaite et al. (2014), Miller et al. (2016) for data.

References

  • Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.

    Article  Google Scholar 

  • Ashburner, J., Barnes, G., Chen, C.-C., Daunizeau, J., Flandin, G., Friston, K., Kiebel, S., Kilner, J., Litvak, V., Moran, R., et al. (2014). Spm12 manual. Wellcome Trust Centre for Neuroimaging, London, UK 2464.

  • Bostami, B., Vergara, V., & Calhoun, V. D. (2021a). Harmonization of multi-site dynamic functional connectivity network data. IEEE BIBE.

  • Bostami, B., Vergara, V., Calhoun, V. D., & Hillary, F. (2021b). Networking brain networks: Federated harmonization of neuroimaging data. Complex Networks, Madrid, Spain.

  • Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011). Differentially private empirical risk minimization. Journal of Machine Learning Research, 12, 3.

    Google Scholar 

  • COINSTAC. http://coinstac.trendscenter.org.

  • Cole, J. H., Marioni, R. E., Harris, S. E., & Deary, I. J. (2019). Brain age and other bodily ages: implications for neuropsychiatry. Molecular psychiatry, 24(2), 266–281.

    Article  Google Scholar 

  • Cole, J. H., Poudel, R. P., Tsagkrasoulis, D., Caan, M. W., Steves, C., Spector, T. D., & Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163, 115–124.

    Article  Google Scholar 

  • Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. V., Maniega, S. M., Royle, N., et al. (2018). Brain age predicts mortality. Molecular psychiatry, 23(5), 1385–1392.

    Article  CAS  Google Scholar 

  • Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., Salman, M., Rahaman, M. A., Abrol, A., Chen, J., et al. (2019). Neuromark: a fully automated ica method to identify effective fmri markers of brain disorders. medRxiv, 19008631.

  • Du, Y., Pearlson, G. D., Liu, J., Sui, J., Yu, Q., He, H., et al. (2015). A group ica based framework for evaluating resting fmri markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage, 122, 272–280.

    Article  Google Scholar 

  • Elliott, M. L., Belsky, D. W., Knodt, A. R., Ireland, D., Melzer, T. R., Poulton, R., Ramrakha, S., Caspi, A., Moffitt, T. E., & Hariri, A. R. (2019). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular psychiatry, 1–10.

  • Fischl, B. (2012). Freesurfer. Neuroimage, 62(2), 774–781.

    Article  Google Scholar 

  • Franke, K., & Gaser, C. Ten. (2019). years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Frontiers in neurology, 10, 789.

    Article  Google Scholar 

  • Gazula, H., Holla, B., Zhang, Z., Xu, J., Verner, E., Kelly, R., Schumann, G., & Calhoun, V. D. (2019). Decentralized multi-site vbm analysis during adolescence shows structural changes linked to age, body mass index, and smoking: A coinstac analysis. bioRxiv, 846386.

  • Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 39(4), 1666–1681.

    Article  Google Scholar 

  • Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D., et al. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature communications, 10(1), 1–10.

    Article  Google Scholar 

  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.

    Article  Google Scholar 

  • Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., et al. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179–188.

    Article  Google Scholar 

  • Luders, E., Cherbuin, N., & Gaser, C. (2016). Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners. Neuroimage, 134, 508–513.

    Article  Google Scholar 

  • Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., et al. (2016). Multimodal population brain imaging in the uk biobank prospective epidemiological study. Nature neuroscience, 19(11), 1523–1536.

    Article  CAS  Google Scholar 

  • Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., et al. (2017). Coinstac: Decentralizing the future of brain imaging analysis. F1000Research 6.

  • Niu, X., Zhang, F., Kounios, J., & Liang, H. (2020). Improved prediction of brain age using multimodal neuroimaging data. Human brain mapping, 41(6), 1626–1643.

    Article  Google Scholar 

  • Plis, S. M., Sarwate, A. D., Wood, D., Dieringer, C., Landis, D., Reed, C., et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in neuroscience, 10, 365.

    Article  Google Scholar 

  • Ray, B., Duan, K., Chen, J., Fu, Z., Suresh, P., Johnson, S., Calhoun, V. D., & Liu, J. (2021). Multimodal brain age prediction with feature selection and comparison. EMBC.

  • Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and parkinson’s disease: why is advancing age the biggest risk factor? Ageing research reviews, 14, 19–30.

    Article  CAS  Google Scholar 

  • Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. Neuroimage, 206, 116189.

    Article  Google Scholar 

  • Sajedi, H., & Pardakhti, N. (2019). Age prediction based on brain mri image: a survey. Journal of medical systems, 43(8), 279.

    Article  Google Scholar 

  • Sarwate, A. D., Plis, S. M., Turner, J. A., Arbabshirani, M. R., & Calhoun, V. D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in neuroinformatics, 8, 35.

    Article  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M. E., et al. (2014). Neuroimaging of the philadelphia neurodevelopmental cohort. Neuroimage, 86, 544–553.

    Article  Google Scholar 

  • Smith, S., Woolrich, M., Behrens, T., Beckmann, C., Flitney, D., Jenkinson, M., Bannister, P., Clare, S., De Luca, M., Hansen, P., et al. Fmrib software library.

  • Stankevičiūtė, K., Azevedo, T., Campbell, A., Bethlehem, R. A., & Liò, P. (2020). Population graph gnns for brain age prediction. bioRxiv.

  • Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of aging, 40, 138–144.

    Article  Google Scholar 

  • Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015). Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. Plos med, 12(3), e1001779.

    Article  Google Scholar 

  • White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping.

  • Woolson, R. (2007). Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, 1–3.

  • Yang, L., Cao, C., Kantor, E. D., Nguyen, L. H., Zheng, X., Park, Y., et al. (2019). Trends in sedentary behavior among the us population, 2001–2016. Jama, 321(16), 1587–1597.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Debbrata Kumar Saha and Biozid Bostami for their comments. We are also grateful to the funding institutions for their support (National Institutes of Health, National Institute on Drug Abuse and the National Institute of Mental Health).

Funding

This work was funded by the National Institutes of Health (R01DA040487), National Institute on Drug Abuse (R01DA049238) and the National Institute of Mental Health (R01MH121246)

Author information

Authors and Affiliations

Authors

Contributions

All the authors helped improve the manuscript. SB designed decentralized models for FNC features, performed the data analysis for all the models and wrote the initial manuscript. RR and HG designed the decentralized model for FreeSurfer and GM features. BR designed feature extraction strategies. AS and SP designed and provided insights into the decentralized regression models and helped in tuning their performances. JL provided guidance about feature extraction and decentralized model design. EV manages the COINSTAC project and helped write the paper. VDC supervised all the stages of the project and also funded the project.

Corresponding author

Correspondence to Sunitha Basodi.

Ethics declarations

Competing Interest

All the authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basodi, S., Raja, R., Ray, B. et al. Decentralized Brain Age Estimation Using MRI Data. Neuroinform 20, 981–990 (2022). https://doi.org/10.1007/s12021-022-09570-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-022-09570-x

Keywords

Navigation