Skip to main content

Advertisement

Log in

FMST: an Automatic Neuron Tracing Method Based on Fast Marching and Minimum Spanning Tree

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Neuron reconstruction is an important technique in computational neuroscience. Although there are many reconstruction algorithms, few can generate robust results. In this paper, we propose a reconstruction algorithm called fast marching spanning tree (FMST). FMST is based on a minimum spanning tree method (MST) and improve its performance in two aspects: faster implementation and no loss of small branches. The contributions of the proposed method are as follows. Firstly, the Euclidean distance weight of edges in MST is improved to be a more reasonable value, which is related to the probability of the existence of an edge. Secondly, a strategy of pruning nodes is presented, which is based on the radius of a node’s inscribed ball. Thirdly, separate branches of broken neuron reconstructions can be merged into a single tree. FMST and many other state of the art reconstruction methods were implemented on two datasets: 120 Drosophila neurons and 163 neurons with gold standard reconstructions. Qualitative and quantitative analysis on experimental results demonstrates that the performance of FMST is good compared with many existing methods. Especially, on the 91 fruitfly neurons with gold standard and evaluated by five metrics, FMST is one of two methods with best performance among all 27 state of the art reconstruction methods. FMST is a good and practicable neuron reconstruction algorithm, and can be implemented in Vaa3D platform as a neuron tracing plugin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acciai, L., Soda, P., Iannello, G. (2016). Automated neuron tracing methods: an updated account. Neuroinformatics, 14(4), 353–367.

    Article  PubMed  Google Scholar 

  • Chen, H., Xiao, H., Liu, T., Peng, H. (2015). SmartTracing: self-learning-based neuron reconstruction. Brain Informatics, 2(3), 135–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donohue, D.E., & Ascoli, G.A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1), 94–102.

    Article  PubMed  Google Scholar 

  • Feng, L., Zhao, T., Kim, J. (2015). Neutube 1.0: a new design for efficient neuron reconstruction software based on the swc format. eNeuro, 2(1), 1–10.

    Article  CAS  Google Scholar 

  • Gala, R. B., Chapeton, J., Jitesh, J., Bhavsar, C., Stepanyants, A. (2014). Active learning of neuron morphology for accurate automated tracing of neuritis. Frontiers in Neuroanatomy, 8.

  • Gillette, T., Brown, K. M., Svoboda, K., Liu, Y., Ascoli, G.A. (2011). DIADEMchallenge.Org: a compendium of resources fostering the continuous development of automated neuronal reconstruction. Neuroinformatics, 9(2-3), 303–304.

    Article  Google Scholar 

  • Halavi, M., Hamilton, K. A., Parekh, R., Ascoli, G.A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in neuroscience, 6.

  • Leandro, J.J.G., Cesarjr, R.M., Costa, L.D.F. (2009). Automatic contour extraction from 2D neuron images. Journal of Neuroscience Methods, 177(2), 497–509.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhou, H., Quan, T., Li, J., Li, Y., Li, A., Luo, Q., Gong, H., Zeng, S. (2017). SparseTracer: the reconstruction of discontinuous neuronal morphology in noisy images. Neuroinformatics, 15(2), 133–149.

    Article  PubMed  Google Scholar 

  • Liu, Y. (2011). The DIADEM and beyond. Neuroinformatics, 9(2–3), 99–102.

    Article  PubMed  Google Scholar 

  • Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77(7), 693–704.

    Article  Google Scholar 

  • Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PloSone, 8(12), e84557.

    Article  CAS  Google Scholar 

  • Mukherjee, S., Condron, B.G., Acton, S.T. (2015). Tubularity flow fieldła technique for automatic neuron segmentation. IEEE Transactions on Image Processing, 24(1), 374–389.

    Article  PubMed  Google Scholar 

  • Santamaría-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., Kakadiaris, I.A. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297– 320.

    Article  PubMed  Google Scholar 

  • Parekh, R., & Ascoli, G.A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ruan, Z., Atasoy, D., Sternson, S. (2010a). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–i46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ruan, Z., Long, F., Simpson, J., Myers, E. (2010b). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Long, F., Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Bria, A., Zhou, Z., Iannello, G., Long, F. (2014). Extensible visualization and analysis for multidimensional images using Vaa3D. Nature Protocol, 9(1), 193–208.

    Article  CAS  Google Scholar 

  • Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., Ascoli, G. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87, 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Meijering, E., Ascoli, G. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13(3), 259–260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethian, J. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. In Cambridge Monographs on Applied and Computational Mathematics. Cambridge: Cambridge University Press.

  • Shillcock, J., Hawrylycz, M., Hill, S., Peng, H. (2016). Reconstructing the brain: from image stacks to neuron synthesis. Brain Informatics, 3(4), 205–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Türetken, E., González, G., Blum, C., Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279– 302.

    Article  PubMed  Google Scholar 

  • Wan, Z., He, Y, Hao, M., Yang, J., Zhong, N. (2017). M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree. BMC Bioinformatics, 18, 197–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Narayanaswamy, A., Tsai, C. L., Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2–3), 193–217.

    Article  PubMed  Google Scholar 

  • Wang, C. -W., Lee, Y. -C., Pradana, H., Zhou, Z., Peng, H. (2017). Ensemble Neuron Tracer for 3D Neuron Reconstruction. Neuroinformatics, 15(2), 185–198.

    Article  PubMed  Google Scholar 

  • Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., Hof, P.R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., He, Y., Yang, Z., Guo, C., Luo, Q., Zhou, W., Chen, S., Li, A., Xiong, B., Jiang, T., Gong, H. (2014). 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 87, 199–208.

    Article  PubMed  Google Scholar 

  • Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, J., Zhao, T., Lee, T., Myers, E., Peng, H. (2011). Anisotropic path searching for automatic neuron reconstruction. Medical Image Analysis, 15(5), 680–689.

    Article  PubMed  Google Scholar 

  • Yang, J., Gonzalez-Bellido, R., Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14, 93–103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Sorensen, S., Peng, H. (2015). Neuron crawler: an automatic tracing algorithm for very large neuron images. In: IEEE 2015 International Symposium on Biomedical Imaging: From Nano to Macro, pp. 870–874.

  • Zhou, Z., Kuo, H.-C., Peng, H., Long, F. (2018). DeepNeuron: an open deep learning toolbox for neuron tracing. bioRxiv:254318.

Download references

Acknowledgements

The authors thank the BigNeuron community for providing the data and the discussions, especially Dr. Zhi Zhou at Allen Institute for Brain Science. This work is partially supported by the National Basic Research Program of China (No. 2014CB744600), National Natural Science Foundation of China (No. 61420106005), and Beijing Natural Science Foundation (No. 4164080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhong or Hanchuan Peng.

Additional information

Information Sharing Statement

The source code of FMST is openly distributed along with the Vaa3D (RRID:SCR_002609) code repository together with other plugins ported in the BigNeuron Hackathon (https://github.com/Vaa3D).

This paper extends and improves our previous work published in the Proceedings of the 2016 International Conference on Brain Informatics & Health (BIH’16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hao, M., Liu, X. et al. FMST: an Automatic Neuron Tracing Method Based on Fast Marching and Minimum Spanning Tree. Neuroinform 17, 185–196 (2019). https://doi.org/10.1007/s12021-018-9392-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9392-y

Keywords

Navigation