Skip to main content

Advertisement

Log in

Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ − (0 − 4 Hz) and α − (8 − 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3), 162–176.

    Article  Google Scholar 

  • Almeida, J, & Voit, E. (2003). Neural-network-based parameter estimation in s-system models of biological networks. Genome Informatics, 14, 114–123.

    PubMed  CAS  Google Scholar 

  • Ashyraliyev, M, Jaeger, J, & Blom, J G. (2008). Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology, 2(1), 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashyraliyev, M, Fomekong-Nanfack, Y, Kaandorp, J A, & Blom, J G. (2009). Systems biology: Parameter estimation for biochemical models: Parameter estimation in systems biology. FEBS Journal, 276(4), 886–902.

    Article  PubMed  CAS  Google Scholar 

  • Banga, J, & Balsa-Canto, E. (2008). Parameter estimation and optimal experimental design. Essays in Biochemistry, 45, 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Bates, D, & Watts, D. (1980). Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B (Methodological), 42(1), 1–25.

    Google Scholar 

  • Bates, D, & Watts, D. (1988). Nonlinear regression analysis and its applications. Wiley.

  • Bojak, I, & Liley, D. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041,902.

    Article  CAS  Google Scholar 

  • Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3), 340–352.

    Article  PubMed  CAS  Google Scholar 

  • Brun, R, Reichert, P, & Kunsch, H. (2001). Practical identifiability analysis of large environmental simulation models. Water Resources Research, 37, 1015–1030.

    Article  Google Scholar 

  • Buhry, L, Pace, M, & Saïghi, S. (2012). Global parameter estimation of an hodgkin-huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits. Neurocomputing, 81, 75–85.

    Article  Google Scholar 

  • Carpenter, B, Gelman, A, Hoffman, M D, an B Goodrich, D L, Betancourt, M, Brubaker, M, Guo, J, Li, P, & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1.

    Article  Google Scholar 

  • Corne, D, Dorigo, M, & Glover, F. (1999). New ideas in optimization. New York: McGraw-Hill.

    Google Scholar 

  • Cuevas, E, Echavarria, A, & Ramirez-Ortegon, M A. (2014). An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence, 40(2), 256–272.

    Article  Google Scholar 

  • Daunizeau, J, Friston, K, & Kiebel, S. (2009). Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21), 2089–2118.

    Article  CAS  Google Scholar 

  • Daunizeau, J, Stephan, K, & Friston, K. (2012). Stochastic dynamic causal modelling of fmri data: Should we care about neural noise? NeuroImage, 62(1), 464–481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David, O, Kiebel, S J, Harrison, L M, Mattout, J, Kilner, J M, & Friston, K J. (2006). Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage, 30, 1255–1272.

    Article  PubMed  Google Scholar 

  • Deco, G, Jirsa, V, McIntosh, A, Sporns, O, & Kotter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 106, 10,302–10,307.

    Article  Google Scholar 

  • Donaldson, J, & Schnabel, R. (1985). Computational experience with confidence regions and confidence intervals for nonlinear least squares. In Proceedings of 17th symposium on the interface of computer sciences and statistics (pp. 83–93). Kentucky: Lexington.

  • Draper, N, & Smith, H. (1998). Applied regression analysis. New York: Wiley.

    Book  Google Scholar 

  • Faisal, A, Selen, L, & Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9, 292–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fogel, D B. (2000). Evolutionary computation: Toward a new philosophy of machine intelligence. New York: IEEE Press.

    Google Scholar 

  • Forde, J, & Nelson, P. (2004). Applications of sturm sequences to bifurcation analysis of delay differential equation models. Journal of Mathematical Analysis and Applications, 300, 273–284.

    Article  Google Scholar 

  • Friston, K, Harrison, L, & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 273–1302.

    Google Scholar 

  • Gelman, A, Carlin, J B, Stern, H S, & Rubin, DB. (2004). Bayesian data analysis, texts in statistical science. London: Hall, CRC.

    Google Scholar 

  • Georgieva, A, & Jordanov, I. (2009). Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. European Journal of Operational Research, 196, 413–422.

    Article  Google Scholar 

  • Girolami, M, & Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73 https://doi.org/10.1111/J.1467-9868.2010.00765.

  • Green, P L, & Worden, K. (2015). Bayesian and markov chain monte carlo methods for identifying nonlinear systems in the presence of uncertainty. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, 2051.

    Article  Google Scholar 

  • Haario, H, Laine, M, Mira, A, & Saksman, E. (2006). Dram: efficient adaptive mcmc.

  • Hamm, L, Brorsen, B, & Hagan, M. (2007). Comparison of stochastic global optimization methods to estimate neural network weights. Neural Processing Letters, 26, 145–158.

    Article  Google Scholar 

  • Hashemi, M, Hutt, A, & Sleigh, J. (2014). Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Journal of Frontiers in Systems Neuroscience, 8, 232.

    PubMed  Google Scholar 

  • Hashemi, M, Hutt, A, & Sleigh, J. (2015). How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. Journal of Computational Neuroscience, 39(2), 155–179.

    Article  PubMed  Google Scholar 

  • Hashemi, M, Hutt, A, Darren, H, & Sleigh, J. (2017). Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLOS ONE, 12(6), 1–29.

    Article  CAS  Google Scholar 

  • Herrmann, C S, Murray, M, Ionta, S, Hutt, A, & Lefebvre, J. (2016). Shaping intrinsic neural oscillations with periodic stimulation. Journal of Neuroscience, 36(19), 5328–5337.

    Article  PubMed  CAS  Google Scholar 

  • Hutt, A. (2013). The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. Frontiers in Computational Neuroscience, 7, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutt, A, & Longtin, A. (2009). Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics, 4(1), 37–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutt, A, Hashemi, M, & beim Graben, P. (2015). How to render neural fields more realistic (pp. 141–159). Springer International Publishing.

  • Hutt, A, Mierau, A, & Lefebvre, J. (2016). Dynamic control of synchronous activity in networks of spiking neurons. PLoS One, 11(9), e0161,488.

    Article  CAS  Google Scholar 

  • Ingalls, B. (2008). Sensitivity analysis: from model parameters to system behaviours. Essays in Biochemistry, 45, 177–193.

    Article  PubMed  CAS  Google Scholar 

  • Jirsa, V, Proix, T, Perdikis, D, Woodman, M, Wang, H, Gonzalez-Martinez, J, Bernard, C, Bénar, C, Guye, M, Chauvel, P, & Bartolomei, F. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Kay, S. (1993). Fundamentals of statistical signal processing: estimation theory. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Kell, D. (2004). Metabolomic and systems bilogy: making sense of the soup. Current Opinion in Microbiology, 7(3), 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, S, Ide, K, Kashihara, A, Kano, M, Hatakeyama, M, Masui, R, Nakagawa, N, Yokoyama, S, Kuramitsu, S, & Konagaya, A. (2005). Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21(7), 1154–1163.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A, Celani, A, Nagao, H, Stasevich, T, & Nakamura, K. (2015). Estimating cellular parameters through optimization procedures: elementary principles and applications. Frontiers in Physiology, 6, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, A, Calderhead, B, & Radde, N. (2014). Hamiltonian monte carlo methods for efficient parameter estimation in steady state dynamical systems. BMC Bioinformatics, 15(1), 253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lera, D, & Dergeyev, Y. (2010). Lipschitz and holder global optimization using space-filling curves. Applied Numerical Mathematics, 60, 115–129.

    Article  Google Scholar 

  • Li, P, & Vu, Q D. (2013). Identification of parameter correlations for parameter estimation in dynamic biological models. BMC Systems Biology, 7, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, C, & Lord, G. (2010). Stochastic methods in neuroscience. Oxford Univ. Press.

  • Lillacci, G, & Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Computational Biology, 6(3), e1000,696.

    Article  CAS  Google Scholar 

  • Ljung, L. (1999). System identification: theory for the user. Englewood Cliffs: Prentice Hall.

    Book  Google Scholar 

  • Marsili-Libelli, S, Guerrizio, S, & Checchi, N. (2003). Confidence regions of estimated parameters for ecological systems. Ecological Modelling, 165, 127–146.

    Article  Google Scholar 

  • Masoliver, J, & Porrá, J. (1993). Harmonic oscillators driven by colored noise: crossovers, resonances, and spectra. Physical Review E, 48(6), 4309–4319.

    Article  CAS  Google Scholar 

  • Mendes, P, & Kell, D. (1998). Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics (Oxford England), 14(10), 869–883.

    Article  CAS  Google Scholar 

  • Moles, C G, Mendes, P, & Banga, J R. (2003). Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome research, 13(11), 2467–2474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myung, I J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90–100.

    Article  Google Scholar 

  • Nunez, P, & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. New York - Oxford: Oxford University Press.

    Book  Google Scholar 

  • Øksendal, B. (2007). Stochastic differential equations an introduction with applications. Berlin: Springer-Verlag.

    Google Scholar 

  • Ostwald, D, & Starke, L. (2016). Probabilistic delay differential equation modeling of event-related potentials. NeuroImage, 136, 227–257.

    Article  PubMed  Google Scholar 

  • Ostwald, D, Kirilina, E, Starke, L, & Blankenburg, F. (2014). A tutorial on variational bayes for latent linear stochastic time-series models. Journal of Mathematical Psychology, 60, 1–19.

    Article  Google Scholar 

  • Papamichail, I, & Adjiman, C. (2004). Global optimization of dynamic systems. Computers & Chemical Engineering, 28(3), 403–415.

    Article  CAS  Google Scholar 

  • Pardalos, P M, Romeijn, H E, & Tuy, H. (2000). Recent developments and trends in global optimization. Journal of Computational and Applied Mathematics, 124(1), 209–228.

    Article  Google Scholar 

  • Patil, A, Huard, D, & Fonnesbeck, CJ. (2010). Pymc: Bayesian stochastic modelling in python. Journal of Statistical Software.

  • Penny, W. (2012). Comparing dynamic causal models using aic, bic and free energy. NeuroImage, 59(1), 319–330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinotsis, D, Moran, R, & Friston, K. (2012). Dynamic causal modeling with neural fields. NeuroImage, 59 (2), 1261–1274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad, J, & Souradeep, T. (2012). Cosmological parameter estimation using particle swarm optimization. Physical Review D, 85(12), 123,008.

    Article  CAS  Google Scholar 

  • Quaiser, T, & Monnigmann, M. (2009). Systematic identifiability testing for nambiguous mechanistic modeling - application to JAK-STAT, MAP kinase, and NF-kB signaling pathway models. BMC Systems Biology, 3, 50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rateitschak, K, Winter, F, Lange, F, Jaster, R, & Wolkenhaue, O. (2012). Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Computational Biology, 8, 12.

    Article  CAS  Google Scholar 

  • Raue, A, Kreutz, C, Maiwald, T, Bachmann, J, Schilling, M, & Timmer, U K J. (2009). Structural and practical identifiability analysis of partially observable dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923–1929.

    Article  PubMed  CAS  Google Scholar 

  • Raue, A, Kreutz, C, Maiwald, T, Klingmuller, U, & Timmer, J. (2011). Addressing parameter identifiability by model-based experimentation. IET Systems Biology, 5(2), 120.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings, J, Pantula, S, & DA, D. (1998). Applied regression analysis: a research tool. New York: Springer-Verlag.

    Book  Google Scholar 

  • Razi, A, Kahan, J, Rees, G, & Friston, K J. (2015). Construct validation of a dcm for resting state fmri. NeuroImage, 106, 1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennie, C, Robinson, P, & Wright, J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.

    Article  PubMed  CAS  Google Scholar 

  • Risken, H. (1984). The Fokkerr-Planck equation. Berlin: Springer.

    Book  Google Scholar 

  • Risken, H. (1996). The Fokker-Planck equation: methods of solutions and applications. New York: Springer-Verlag.

    Book  Google Scholar 

  • Robinson, P, Rennie, C, Wright, J, Bahramali, H, Gordon, E, & Rowe, D. (2001a). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 201,903.

  • Robinson, P, Loxley, P, & Rennie, S C. (2001b). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physical Review E, 63, 041,909.

  • Robinson, P, Rennie, C, & Rowe, D. (2002). Dynamics of large-scale brain activity in normal arousal states and eplieptic seizures. Physical Review E, 65(4), 041,924.

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez, M, Egea, JA, & Banga, JR. (2006a). Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics, 7, 483.

  • Rodriguez-Fernandez, M, Mendes, P, & Banga, JR. (2006b). A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems, 83, 248–265.

  • Rodriguez-Fernandez, M, Rehberg, M, Kremling, A, & Banga, J R. (2013). Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Systems Biology, 7(1), 76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe, D, Robinson, P, & Rennie, C. (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. Journal of Theoretical Biology, 231(3), 413–433.

    Article  PubMed  Google Scholar 

  • Schmeink, K, Adam, R, & Hoeher, P A. (2011). Joint communication and positioning based on soft channel parameter estimation. EURASIP Journal on Wireless Communications and Networking, 185.

  • Schwaab, M, Biscaia, JrE C, Monteiro, J L, & Pinto, J C. (2008). Nonlinear parameter estimation through particle swarm optimization. Chemical Engineering Science, 63(6), 1542–1552.

    Article  CAS  Google Scholar 

  • Seber, G, & Wild, C. (1997). Non linear regression. New York: Wiley.

    Google Scholar 

  • Sleigh, J W, Leslie, K, & Voss, L. (2010). The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. Journal of Clinical Monitoring and Computing, 24(4), 307–318.

    Article  PubMed  Google Scholar 

  • Stelling, J. (2004). Mathematical models in microbial systems biology. Current Opinion in Microbiology, 7(5), 513–518.

    Article  PubMed  Google Scholar 

  • Svensson, C M, Coombes, S, & Peirce, J W. (2012). Using evolutionary algorithms for fitting high-dimensional models to neuronal data. Neuroinformatics, 10(2), 199–218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tashkova, K, Korosec, P, Silc, J, Todorovski, L, & Dzeroski, S. (2011). Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology, 5(1), 159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai, K Y, & Wang, F S. (2005). Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7), 1180–1188.

    Article  PubMed  CAS  Google Scholar 

  • Van Albada, S, Kerr, C, Robinson, P, Chiang, A, & Rennie, C. (2010). Neurophysiological changes with age probed by inverse modeling of eeg spectra. Clinical Neurophysiology, 121, 21–38.

    Article  PubMed  Google Scholar 

  • van Riel, N A. (2006). Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics, 7(4), 364–374.

    Article  PubMed  Google Scholar 

  • Victor, J, Drover, J, Conte, M, & Schiff, N. (2011). Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proceedings of the National Academy of Sciences of the United States of America, 118, 15,631–15,638.

    Article  Google Scholar 

  • Villaverde, A F, & Banga, J. (2013). Reverse engineering and identification in systems biology: strategies, perspectives and challenges. Journal of The Royal Society Interface, 11, 91.

    Article  Google Scholar 

  • Voit, E, & Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformativs, 20, 1670–1681.

    Article  CAS  Google Scholar 

  • Walter, E, & Pronzato, L. (1997). Identification of parametric models from experimental data. Springer.

  • Wang, M, & Uhlenbeck, G. (1945). On the theory of the brownian motion. Physical Review Modelling, 17(2), 323.

    Article  Google Scholar 

  • Wilkinson, D. (2011). Stochastic modelling for systems biology, 2nd edn. CRC Press.

  • Zhan, C, & Yeung, L F. (2011). Parameter estimation in systems biology models using spline approximation. BMC Systems Biology, 5(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models. IET System Biology, 5(6), 458–469.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council for support under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 257253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Hashemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 312 KB)

(PDF 190 KB)

(PDF 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Hutt, A., Buhry, L. et al. Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia. Neuroinform 16, 231–251 (2018). https://doi.org/10.1007/s12021-018-9369-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9369-x

Keywords

Navigation