Skip to main content
Log in

Automated Segmentation of Mouse Brain Images Using Multi-Atlas Multi-ROI Deformation and Label Fusion

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We propose an automated multi-atlas and multi-ROI based segmentation method for both skull-stripping of mouse brain and the ROI-labeling of mouse brain structures from the three dimensional (3D) magnetic resonance images (MRI). Three main steps are involved in our method. First, a region of interest (ROI) guided warping algorithm is designed to register multi-atlas images to the subject space, by considering more on the matching of image contents around the ROI boundaries which are more important for ROI labeling. Then, a multi-atlas and multi-ROI based deformable segmentation method is adopted to refine the ROI labeling result by deforming each ROI surface via boundary recognizers (i.e., SVM classifiers) trained on local surface patches. Finally, a local-mutual-information (MI) based multi-label fusion technique is proposed for allowing the atlases with better local image similarity with the subject to have more contributions in label fusion. The experimental results show that our method works better than the conventional methods on both in vitro and in vivo mouse brain datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, A. A., Dale, A. M., Badea, A., & Johnson, G. A. (2005). Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain. NeuroImage, 27, 425–435.

    Article  PubMed  Google Scholar 

  • Badea, A., Nicholls, P. J., Johnson, G. A., & Wetsel, W. C. (2007). Neuroanatomical phenotypes in the reeler mouse. NeuroImage, 34, 1363–1374.

    Article  PubMed  Google Scholar 

  • Bae, M. H., Pan, R., Wu, T., & Badea, A. (2009). Automated segmentation of mouse brain images using extended MRF. NeuroImage, 46, 717–725.

    Article  PubMed  Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  • Chakraborty, A., Staib, L. H., & Duncan, J. S. (1996). Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, 15, 859–870.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty, M. M., Steadman, P., van Eede, M. C., Calcott, R. D., Gu, V., Shaw, P., Raznahan, A., Collins, D. L., & Lerch, J. P. (2012). Performing label-fusion-based segmentation using multiple automatically generated templates. Human Brain Mapping. doi:10.1002/hbm.22092.

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331.

    Article  Google Scholar 

  • Lau, J. C., Lerch, J. P., Sled, J. G., Henkelman, R. M., Evans, A. C., & Bedell, B. J. (2008). Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer’s disease. NeuroImage, 42(1), 19–27.

    Article  PubMed  Google Scholar 

  • Lee, J., Jomier, J., Aylward, S., Tyszka, M., Moy, S., Lauder, J., & Styner, M. (2009). Evaluation of atlas based mouse brain segmentation. Proceedings of SPIE, 7259, 725943–725949.

    Article  PubMed  Google Scholar 

  • Lee, J. M., Yoon, U., Nam, S. H., Kim, J. H., Kim, I. Y., & Kim, S. I. (2003). Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error. Computers in Biology and Medicine, 33, 495–507.

    Article  PubMed  Google Scholar 

  • Lerch, J. P., Carroll, J. B., Spring, S., Bertram, L. N., Schwab, C., Hayden, M. R., & Henkelman, R. M. (2008). Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage, 39(1), 32–39.

    Article  PubMed  Google Scholar 

  • Liu, T., Nie, J., Tarokh, A., Guo, L., & Wong, S. T. (2008). Reconstruction of central cortical surface from brain MRI images: method and application. NeuroImage, 40, 991–1002.

    Article  PubMed  Google Scholar 

  • Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface reconstruction algorithm. Computer Graphics, 21.

  • Ma, Y., Hof, P. R., Grant, S. C., Blackband, S. J., Bennett, R., Slatest, L., McGuigan, M. D., & Benveniste, H. (2005). A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience, 135, 1203–1215.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, B., Sheng, H., Warner, D. S., Hedlund, L. W., & Benveniste, H. (2001). Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study. NeuroImage, 14, 1244–1255.

    Article  PubMed  CAS  Google Scholar 

  • McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical Image Analysis, 1, 91–108.

    Article  PubMed  CAS  Google Scholar 

  • Nieman, B. J., Lerch, J. P., Bock, N. A., Chen, X. J., Sled, J. G., & Henkelman, R. M. (2007). Mouse behavioral mutants have neuroimaging abnormalities. Human Brain Mapping, 28(6), 567–575.

    Article  PubMed  Google Scholar 

  • Park, J. G., & Lee, C. (2009). Skull stripping based on region growing for magnetic resonance brain images. NeuroImage, 47, 1394–1407.

    Article  PubMed  Google Scholar 

  • Redwine, J. M., Kosofsky, B., Jacobs, R. E., Games, D., Reilly, J. F., Morrison, J. H., Young, W. G., & Bloom, F. E. (2003). Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proceedings of the National Academy of Sciences United States of America, 100, 1381–1386.

    Article  CAS  Google Scholar 

  • Sabuncu, M. R., Yeo, B. T., Van Leemput, K., Fischl, B., & Golland, P. (2010). A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging, 29, 1714–1729.

    Article  PubMed  Google Scholar 

  • Sharief, A. A., Badea, A., Dale, A. M., & Johnson, G. A. (2008). Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy. NeuroImage, 39, 136–145.

    Article  PubMed  Google Scholar 

  • Shen, D., & Ip, H. H. S. (1997). A Hopfield neural network for adaptive image segmentation: An active surface paradigm. Pattern Recognition Letters, 18(1), 37–48.

    Article  Google Scholar 

  • Shen, D., Wong, W., Ip, H. H. S. (1999). Affine-invariant image retrieval by correspondence matching of shapes. Image and Vision Computing, 17(7), 489–499.

    Article  Google Scholar 

  • Shi, J. B., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888–905.

    Article  Google Scholar 

  • Shi, Y., Qi, F., Xue, Z., Chen, L., Ito, K., Matsuo, H., & Shen, D. (2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Transactions on Medical Imaging, 27(4), 481–494.

    Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging on, 17, 87–97.

    Article  CAS  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Spring, S., Lerch, J. P., & Henkelman, R. M. (2007). Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging. NeuroImage, 35(4), 1424–1433.

    Article  PubMed  Google Scholar 

  • Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45, S61–S72.

    Article  PubMed  Google Scholar 

  • Wang, Y., Teoh, E. K., & Shen, D. (2001). Structure-adaptive B-snake for segmenting complex objects. International Conference on Image Processing 2001, 2, 769–772.

  • Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9), 1145–1157.

    Article  PubMed  Google Scholar 

  • Zhan, Y., & Shen, D. (2003). Automated segmentation of 3D US prostate images using statistical texture-based matching method. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, 688–696.

    Article  Google Scholar 

  • Zhan, Y., & Shen, D. (2006). Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Transactions on Medical Imaging, 25, 256–272.

    Article  PubMed  Google Scholar 

  • Zhang, J., Peng, Q., Li, Q., Jahanshad, N., Hou, Z., Jiang, M., Masuda, N., Langbehn, D. R., Miller, M. I., Mori, S., Ross, C. A., & Duan, W. (2010). Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. NeuroImage, 49, 2340–2351.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH grants EB006733, EB008374, EB009634, AG041721, and CA140413, by National Science Foundation of China under grant No. 61075010, and also by The National Basic Research Program of China (973 Program) grant No. 2010CB732505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J., Shen, D. Automated Segmentation of Mouse Brain Images Using Multi-Atlas Multi-ROI Deformation and Label Fusion. Neuroinform 11, 35–45 (2013). https://doi.org/10.1007/s12021-012-9163-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9163-0

Keywords

Navigation