Skip to main content

Advertisement

Log in

Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000). Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage, 11(1), 66–84.

    Article  PubMed  CAS  Google Scholar 

  • Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. PNAS, 108(18), 7641–7646.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1001–1013.

    Article  PubMed  Google Scholar 

  • Biswal, B. B., Mennes, M., & Zuo, X. N. et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.

    Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50, 81–98.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Pekar, J. J., & Pearlson, G. D. (2004). Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychopharmacology, 29, 2097–3017.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2009). Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behavioural Neurology, 21, 63–75.

    PubMed  Google Scholar 

  • Faraco, C. C., Unsworth, N., Langley, J., Terry, D., Li, K., Zhang, D., Liu, T., & Miller, L. S. (2011). Complex span tasks and hippocampal recruitment during working memory. NeuroImage, 55(2), 773–787.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302.

    Article  PubMed  CAS  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Gao, J.-H., & Yee, S.-H. (2003). Iterative temporal clustering analysis for the detection of multiple response peaks in fMRI. Magnetic Resonance Imaging, 21, 51–53.

    Article  PubMed  Google Scholar 

  • Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54, 677–696.

    Article  PubMed  CAS  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., Meuli, R., Thiran, J.-P., Honey, C. J., & Sporns, O. (2010). MR connectomics: principles and challenges. Journal of Neuroscience Methods, 194, 34–45.

    Article  PubMed  Google Scholar 

  • Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106, 2035–2040.

    Article  CAS  Google Scholar 

  • Hu, X., Deng, F., Li, K., Zhang, T., Chen, H., Jiang, X., Lv, J., Zhu, D., Faraco, C., Zhang, D., Mesbah, A., Han, J., Hua, X., Xie, L., Miller, S., Guo, L., & Liu, T. (2010). Bridging low-level features and high-level semantics via fMRI brain imaging for video classification. Proceedings of the international conference on Multimedia (pp. 451–460). Firenze, Italy: ACM.

    Google Scholar 

  • Hu, X., Li, K., Han, J., Hua, X.-S., Guo, L., & Liu, T. (2012). Bridging the semantic gap via functional brain imaging, IEEE Transactions on Multimedia, 14(2): 314–325

    Google Scholar 

  • Hu, X., Guo, L., Zhang, D., Li, K., Zhang, T., Lv, J., Han, J., Liu, T. (2011). Assessing the dynamics on functional brain networks using spectral graph theory. Proceedings of the 2010 IEEE international symposium Biomedical imaging: From nano to Macro (pp. 2144–2149). Rotterdam, Netherlands: IEEE Press.

  • Kennedy, D. N. (2010). Making connections in the connectome era. Neuroinformatics, 8(2), 61–62.

    Article  PubMed  Google Scholar 

  • Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., Miller, L. S., & Liu, T. (2010). Cortical surface based identification of brain networks using high spatial resolution resting state FMRI data. Proceedings of the 2010 IEEE international symposium on Biomedical imaging: From nano to Macro (pp. 656–659). Rotterdam, Netherlands: IEEE Press.

    Google Scholar 

  • Li, X., Li, K., Guo, L., Lim, C., & Liu, T. (2011). Fiber-centered granger causality analysis. Proceedings of the 14th international conference on Medical image computing and computerassisted intervention. (pp. 14(Pt 2):251–259.) Springer, Germany.

  • Li, K., Guo, L., Zhu, D., Hu, X., Han, J., & Liu, T. (2012). Individual functional ROI optimization via maximization of group-wise consistency of structural and functional profiles. Neuroinformatics, 10, 225–242.

    Google Scholar 

  • Lindquist, M. A., Waugh, C., & Wager, T. D. (2007). Modeling state-related fMRI activity using change-point theory. NeuroImage, 35, 1125–1141.

    Article  PubMed  Google Scholar 

  • Liu, T., Li, H., Wong, K., Tarokh, A., Guo, L., & Wong, S. T. C. (2007). Brain tissue segmentation based on DTI data. NeuroImage, 38, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Liu, T., Nie, J., Tarokh, A., Guo, L., & Wong, S. (2008). Reconstruction of Central Cortical Surface from MRI Brain Images: Method and Application. NeuroImage, 40(3), 991–1002.

    Article  PubMed  Google Scholar 

  • Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5, 189–202.

    Google Scholar 

  • Lim, C., Li, X., Li, K., Guo, L., & Liu, T. (2011). Brain state change detection via fiber-centered functional connectivity analysis, Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, 2155–2160.

  • Lv, J., Guo, L., Hu, X., Zhang, T., Li, K., Zhang, D., et al. (2010). Fiber-centered analysis of brain connectivity using DTI and resting state FMRI data. In: T. Jiang, N. Navab, J. Pluim, & M. Viergever, (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 (pp. 143–150). Springer Berlin/Heidelberg.

  • Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.

    PubMed  CAS  Google Scholar 

  • Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E. H., Barsalou, L., & Keilholz, S. D. (2011). Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 54, 1140–1150.

    Article  PubMed  Google Scholar 

  • Morgan, V. L., Price, R. R., Arain, A., Modur, P., & Abou-Khalil, B. (2004). Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. NeuroImage, 21, 473–481.

    Article  PubMed  Google Scholar 

  • Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606–616.

    PubMed  CAS  Google Scholar 

  • Robinson, L. F., Wager, T. D., & Lindquist, M. A. (2010). Change point estimation in multi-subject fMRI studies. NeuroImage, 49, 1581–1592.

    Article  PubMed  Google Scholar 

  • Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: a defense of functional localizers. Neuroimage, 30, 1088–1096.

    Google Scholar 

  • Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. on Medical Imaging, 21(11), 1421–1439.

    Article  Google Scholar 

  • Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875–891.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1, e42.

    Article  PubMed  Google Scholar 

  • Thompson, P. M., & Toga, A. W. (1996). A surface-based technique for 1336 warping 3-dimensional images of the brain. IEEE Transaction on Medical Imaging, 15(4), 1–16.

    Article  Google Scholar 

  • Tsunoda, K., Yamane, Y., Nishizaki, M., & Tanifuji, M. (2001). Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience, 4, 832–838.

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk, K. R. A., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103, 297–321.

    Article  PubMed  Google Scholar 

  • Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: Evidence from resting state fMRI. NeuroImage, 31, 496–504.

    Article  PubMed  Google Scholar 

  • Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53, 1197–1207.

    Article  PubMed  Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22, 394–400.

    Article  PubMed  Google Scholar 

  • Zhang, T., Guo, L., Hu, X., Li, K., Jin, C., Cui, G., et al. (2011). Predicting functional cortical ROIs via DTI-derived fiber shape models. Cerebral Cortex, in press.

  • Zhu, D., Li, K., Faraco, C., Deng, F., Zhang, D., Jiang, X., et al. (2011). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles, NeuroImage, in press.

  • Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2012). DICCCOL: Dense Individualized and Common Connectivity-based Cortical Landmarks, *Joint first authors, accepted, Cerebral Cortex.

Download references

Acknowledgements

T Liu was supported by the NIH Career Award EB 006878, NIH R01 HL087923-03 S2, NIH R01 DA033393 and The University of Georgia start-up research funding. Parts of the OSPAN working memory fMRI data sets were provided by Carlos Faraco and L. Stephen Miller. The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Liu.

Additional information

Xiang Li and Chulwoo Lim are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Lim, C., Li, K. et al. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis. Neuroinform 11, 193–210 (2013). https://doi.org/10.1007/s12021-012-9157-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9157-y

Keywords

Navigation