Skip to main content
Log in

fMRI Data Visualization with BrainBlend and Blender

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The visualization and exploration of neuroimaging data is important for the analysis of anatomical and functional magnetic resonance (MR) images and thresholded statistical parametric maps. While two-dimensional orthogonal views of neuroimaging data are used to display statistical analyses, real three-dimensional (3d) depictions are helpful for showing the spatial distribution of a functional network, as well as its temporal evolution. However, viewers that are freely available on the internet offer only limited rendering capabilities and depictions of temporal changes of the blood oxygen level-dependent (BOLD) response. In this article, we present BrainBlend, a toolbox for the software package Statistical Parametric Mapping (SPM), that generates voxeldata files to be used with the open-source 3d-software “Blender”. Our interface between SPM and Blender permits the use of any Analyze- and Nifti-file for the creation of images and animations of transparent volumetric objects. Different kinds of anatomical, functional and statistical data can be rendered as volumetric objects in order to convey an immediate understanding of the three-dimensional shape. Representations of functional networks can be animated using a time course extracted from the general linear model or the independent component analysis. Relative BOLD activations of functional MR-images can be calculated for a time-resolved depiction of hemodynamic changes. The resulting animation can be displayed along with its corresponding paradigm matrix and the presented stimuli. BrainBlend is particularly suitable for the visual exploration of interactions between functional networks, for time-resolved animations of BOLD changes and meets high demands on visual quality in images and animations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bagarinao, E., Matsuo, K., Nakai, T., & Sato, S. (2003). Estimation of general linear model coefficients for real-time application. NeuroImage, 19, 422–429.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. In Seventh Int. Conf. on Functional Mapping of the Human Brain, pp. 1001–1013.

  • Büchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention. cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex (New York, N.Y. 1991), 7, 768–778.

    Article  Google Scholar 

  • Cox, R. W., Jesmanowicz, A., & Hyde, J. S. (1995). Real-time functional magnetic resonance imaging. Magnetic resonance in medicine. Official Journal of the Society of Magnetic Resonance in Medicine, 33, 230–236.

    CAS  Google Scholar 

  • Creem-Regehr, S. H., Neil, J. A., & Yeh, H. J. (2007). Neural correlates of two imagined egocentric transformations. NeuroImage, 35, 916–927.

    Article  PubMed  Google Scholar 

  • Eger, E., Ashburner, J., Haynes, J.-D., Dolan, R. J., & Rees, G. (2008). fMRI activity patterns in human LOC carry information about object exemplars within category. Journal of Cognitive Neuroscience, 20, 356–370.

    Article  PubMed  Google Scholar 

  • Engel, A., Burke, M., Fiehler, K., Bien, S., & Rösler, F. (2008). Motor learning affects visual movement perception. European Journal of Neuroscience, 27, 2294–2302.

    Article  PubMed  Google Scholar 

  • Friston, K. J. (2008). Statistical parametric mapping. The analysis of functional brain images. Amsterdam: Elsevier Academic.

    Google Scholar 

  • Gatti, E., Massari, R., Sacchelli, C., Lops, T., Gatti, R., & Riva, G. (2008). Why do you drink? Virtual reality as an experiential medium for the assessment of alcohol-dependent individuals. Studies in Health Technology and Informatics, 132, 132–137.

    PubMed  Google Scholar 

  • Gering, D. T., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L. J., Grimson, W. E., et al. (2001). An integrated visualization system for surgical planning and guidance using image fusion and an open MR. Journal of Magnetic Resonance Imaging, 13, 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Gouws, A., Woods, W., Millman, R., Morland, A., & Green, G. (2009). DataViewer3D: an open-source, cross- platform multi-modal neuroimaging data visualization tool. Front Neuroinform, 3, 9. doi:10.3389/neuro.11.009.2009.

    Article  Google Scholar 

  • Heider, D., Pyka, M., & Barnekow, A. (2009). DNA watermarks in non-coding regulatory sequences. BMC Research Notes, 2, 125.

    Article  PubMed  Google Scholar 

  • Hess, R. (2007). The essential Blender. Guide to 3D creation with the open source suite Blender. San Francisco: No Starch.

    Google Scholar 

  • Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., & Buckner, R. L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11, 735–759.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J., Cardona, A., De Miguel-Bonet Mdel, M., & Hartenstein, V. (2007). Neurobiology of the basal platyhelminth Macrostomum lignano. Map and digital 3D model of the juvenile brain neuropile. Development Genes and Evolution, 217, 569–584.

    Article  CAS  PubMed  Google Scholar 

  • Nägerl, U. V., Köstinger, G., Anderson, J. C., Martin, K. A., & Bonhoeffer, T. (2007). Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 8149–8156.

    Google Scholar 

  • Palombi, O., Fuentes, S., Chaffanjon, P., Passagia, J. G., & Chirossel, J. P. (2006). Cervical venous organization in the transverse foramen. Surgical and Radiologic Anatomy, 28, 66–70.

    Article  PubMed  Google Scholar 

  • Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics (Oxford, England), 24, 1827–1836.

    Article  CAS  Google Scholar 

  • Riva, G., Gaggioli, A., Villani, D., Preziosa, A., Morganti, F., Corsi, R., et al. (2007). NeuroVR: an open source virtual reality platform for clinical psychology and behavioral neurosciences. Studies in Health Technology and Informatics, 125, 394–399.

    PubMed  Google Scholar 

  • Rivera-Calzada, A., Maman, J. D., Maman, J. P., Spagnolo, L., Pearl, L. H., & Llorca, O. (2005). Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure, 13, 243–255.

    Article  CAS  PubMed  Google Scholar 

  • Rorden, C., Karnath, H. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19, 1081–1088.

    Article  PubMed  Google Scholar 

  • Rößler, F., Tejada, E., Fangmeier, T., Ertl, T., & Knauff, M. (2006). GPU-based Multi-Volume Rendering for the Visualization of Functional Brain Images. Proceedings of SimVis 2006, pp. 305–318.

  • Tavares, P., Lawrence, A. D., & Barnard, P. J. (2008). Paying attention to social meaning: an FMRI study. Cerebral Cortex, 18, 1876–1885.

    Article  PubMed  Google Scholar 

  • Ventura, S. R., Diamantino, R. F., Tavares J. M. (2008). Three-Dimensional modeling of tongue during speech using MRI data. CMBBE 2008—8th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering 49, 49–58.

  • Watt, A., & Watt, M. (1992). Advanced animation and rendering techniques. Theory and practice. New York: ACM. Harlow: Addison-Wesley.

    Google Scholar 

  • Windischberger, C., Cunnington, R., Lamm, C., Lanzenberger, R., Langenberger, H., Deecke, L., et al. (2008). Time-resolved analysis of fMRI signal changes using brain activation movies. Journal of Neuroscience Methods, 169, 222–230.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a scholarschip to M.P. by the Otto Creutzfeld Center for Cognitive Neuroscience, University of Münster, Germany, and by a young investigator grant to C.K. by the Interdisciplinary Centre for Clinical Research of the University of Münster, Germany (IZKF FG4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pyka.

Additional information

Information Sharing Statement

The toolbox, tutorials and all presented pictures and mentioned animations are publicly available under http://brainblend.sourceforge.net.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyka, M., Hertog, M., Fernandez, R. et al. fMRI Data Visualization with BrainBlend and Blender. Neuroinform 8, 21–31 (2010). https://doi.org/10.1007/s12021-009-9060-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-009-9060-3

Keywords

Navigation