Skip to main content
Log in

Phylogenetic Proximity Revealed by Neurodevelopmental Event Timings

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Statistical properties such as distribution and correlation signatures were investigated using a temporal database of common neurodevelopmental events in the three species most frequently used in experimental studies, rat, mouse, and macaque. There was a fine nexus between phylogenetic proximity and empirically derived dates of the occurrences of 40 common events including the neurogenesis of cortical layers and outgrowth milestones of developing axonal projections. Exponential and power-law approximations to the distribution of the events reveal strikingly similar decay patterns in rats and mice when compared to macaques. Subsequent hierarchical clustering of the common event timings also captures phylogenetic proximity, an association further supported by multivariate linear regression data. These preliminary results suggest that statistical analyses of the timing of developmental milestones may offer a novel measure of phylogenetic classifications. This may have added pragmatic value in the specific support it offers for the reliability of rat/mouse comparative modeling, as well as in the broader implications for the potential of meta-analyses using databases assembled from the extensive empirical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the Maximum Likelihood Principle.Proceedings of the 2nd International Symposium of Information Theory pp. 267–281. Budapest: Akadamiai Kiado.

    Google Scholar 

  • Ashwell, K. W., Waite, P. M., & Marotte, L. (1996). Ontogeny of the projection tracts and commissural fibres in the forebrain of the tammar wallaby (Macropus eugenii): Timing in comparison with other mammals. Brain, Behavior and Evolution, 47(1), 8–22.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, S. A., & Altman, J. (1990). Development of layer I and the subplate in the rat neocortex. Experimental Neurology, 107(1), 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, S. A., & Altman, J. (1991). Neocortical development. New York: Raven xiv, 255.

    Google Scholar 

  • Brunjes, P. C., Korol, D. L., & Stern, K. G. (1989). Prenatal neurogenesis in the telencephalon of the precocial mouse Acomys cahirinus. Neuroscience Letters, 107(1–3), 114–119.

    Article  PubMed  CAS  Google Scholar 

  • Caviness Jr., V. S. (1982). Neocortical histogenesis in normal and reeler mice: A developmental study based upon [3H]thymidine autoradiography. Brain Research, 256(3), 293–302.

    PubMed  Google Scholar 

  • Clancy, B. (2006). Practical use of evolutionary neuroscience principles. Behavioral and Brain Sciences, 29, 14–15.

    Article  Google Scholar 

  • Clancy, B., Darlington, R. B., & Finlay, B. L. (2000). The course of human events: Predicting the timing of primate neural development. Developmental Science, 3, 57–66.

    Article  Google Scholar 

  • Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Clancy, B., & Finlay, B. (2003). Neural correlates of early language learning. Essential readings in language development. Amsterdam: Elsevier.

    Google Scholar 

  • Clancy, B., Finlay, B. L., Darlington, R. B., & Anand, K. J. (2007a). Extrapolating brain development from experimental species to humans. Neurotoxicology, 28, 931–937.

    Article  PubMed  Google Scholar 

  • Clancy, B., Kersh, B., Hyde, J., Darlington, R. B., Anand, K. J., & Finlay, B. L. (2007b). Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 5, 79–94.

    PubMed  Google Scholar 

  • Darlington, R. B. (1990). Regression and linear models. New York: McGraw-Hill.

    Google Scholar 

  • Darlington, R. B., Dunlop, S. A., & Finlay, B. L. (1999). Neural development in metatherian and eutherian mammals: variation and constraint. Journal of Comparative Neurology, 411, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, S. A., Tee, L. B., Lund, R. D., & Beazley, L. D. (1997). Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata. Journal of Comparative Neurology, 384(1), 26–40.

    Article  PubMed  CAS  Google Scholar 

  • Everitt, B. (1993). Cluster analysis (3rd ed.). London: Edward Arnold.

    Google Scholar 

  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral and Brain Sciences, 24, 263–307.

    PubMed  CAS  Google Scholar 

  • Harrell, F. E. (2001). Regression modeling strategies. New York: Springer.

    Google Scholar 

  • Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.

    Article  Google Scholar 

  • Jobson, J. D. (1992). Applied multivariate data analysis: Vol. II: Categorical and multivariate methods. New York: Springer.

    Google Scholar 

  • Kostovic, I., & Rakic, P. (1980). Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. Journal of Neurocytology, 9(2), 219–242.

    Article  PubMed  CAS  Google Scholar 

  • Langford, C., & Sefton, A. J. (1992). The relative time course of axonal loss from the optic nerve of the developing guinea pig is consistent with that of other mammals. Visual Neuroscience, 9(6), 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M. B., & Shatz, C. J. (1985). Neurogenesis of the cat's primary visual cortex. Journal of Comparative Neurology, 242(4), 611–631.

    Article  PubMed  CAS  Google Scholar 

  • Meister, M., Wong, R. O., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252(5008), 939–943.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M. E. J. (2005). Power-laws, Pareto Distributions and Zipf’s law. Contemporary Physics, 46, 323.

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in FORTRAN: The art of scientific computing (pp. 617–6202nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Price, D. J., & Blakemore, C. (1985). Regressive events in the postnatal development of association projections in the visual cortex. Nature, 316, 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183(123), 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. R., & Dreher, B. (1990). The visual pathways of eutherian mammals and marsupials develop according to a common timetable. Brain, Behavior and Evolution, 36(4), 177–195.

    Article  PubMed  CAS  Google Scholar 

  • Romesburg, H. C. (1984). Cluster Analysis for researchers. Belmont, CA: Lifetime Learning.

    Google Scholar 

  • Stanley, H. E. (1995). Power laws and Universality. Nature, 378, 554.

    Article  CAS  Google Scholar 

  • Tamayo, P., Scanfeld, D., Ebert, B. L., Gillette, M. A., Roberts, C. W., & Mesirov, J. P. (2007). Metagene projection for cross-platform, cross-species characterization of global transcriptional states. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5959–5964.

    Article  PubMed  CAS  Google Scholar 

  • Woo, T. U., Beale, J. M., & Finlay, B. L. (1991). Dual fate of subplate neurons in a rodent. Cerebral Cortex, 1(5), 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z. J. (1998). Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. Journal of Neuroscience, 18(11), 4155–4165.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially supported by NIH Grant Number P20 RR-16460 from the IDeA Networks of Biomedical Research Excellence Program of the National Center for Research Resources. The authors would like to thank Susan Lantz for helpful comments and suggestions on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, R., Clancy, B. Phylogenetic Proximity Revealed by Neurodevelopmental Event Timings. Neuroinform 6, 71–79 (2008). https://doi.org/10.1007/s12021-008-9013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-008-9013-2

Keywords

Navigation